
Lecture notes:

Running EGS4 on di�erent architectures

Alex F Bielajew
Institute for National Measurement Standards
National Research Council of Canada
Ottawa, Canada
K1A 0R6

Tel: 613-993-2715

FAX: 613-952-9865

e-mail: alex@irs.phy.nrc.ca

National Research Council of Canada Report PIRS-0392

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 1

Naeser's Law:

\You can make it foolproof, but you can't make it damnfoolproof.."

1 Introduction

This lecture is a highly personalised description of various issues related to running EGS4

on di�erent machines. The author's direct experience comes from running EGS4 on the follow-

ing architectures:

� VAX/VMS (e.g. 11/780 FPA, �VAX 3600, VAX 8xxx)

� IBM/CMS 3090/180/300/300E (HPO, VF)

� FPS-264 (M64/50)

� IBM PC 386/387 (OS386)

� RISC/UNIX machines (DecStations, SGI's, SunSparcstations, IBM R6000's)

EGS4 has run on a variety of machines from PC/286's to Cray's as well as a variety of archi-

tectures, scalar, parallel and vector.

In this lecture I will attempt to address what problems one might expect in getting EGS4

running on a scalar (serial processor) machine. I leave detailed discussion of other architectures

to a later date (when the author can get his hands on some).

2 Questions posed by EGS-perts and in-EGS-perts

2.1 What machine should I run EGS4 on?

Usually the response to this question is, \Whatever happens to be available at my

institution!". In this case the proper question is, \Can I get EGS4 running on this machine?".

The minimum con�guration for EGS code is to have about 500KB of available main

memory, about 20 MB of disk storage and a FORTRAN compiler. Increasing both main mem-

ory and disk capacities will increase one's ability to handle complex problems. Monte Carlo

simulations are generally compute-bound problems, so if economy of funds is important one

does not need to invest in the fastest disk storage available. (It is nice to have, however.) Other

desirable software/hardware/peopleware capabilities in approximate order of priority are:

� Floating-point processors, (e.g. VAX FPA's, 80x87's, Weitek x167's) (almost a waste of

time without these)

� Lots of memory. Fixed memory machines (e.g. DOS-PC's, Cray's) will not allow your

code to run if it is too big. Virtual memory machines can slow down by a factor of 104 or

more(!) if your job does not �t into memory and it employs disk space as virtual memory.

� Fortran debugging tools

� Graphics capabilities

� Someone else to run the system for you

2.2 How fast is fast?

There are many measures of machine speed, MIPS, MFLOPS, Whetstones, Dhrystones,

Specmarks, Khornstones, LINPACK benchmarks, etc... Peak machine speed, peak-MIPS or peak-

MFLOPS, (often quoted by manufacturers) or peak-anything is an almost useless measure of a

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 2

machine's speed. The only possible interpretation of peak speed is, \The speed your application

is guaranteed not to surpass". The most useful benchmark of a machine's speed is to time your

own code running on it. To this end, we distribute a standard timing benchmark code [1]

(called XYZDOS, part of the UNIX and PC distributions), for comparison of various machines

and architectures. The next best estimate can be gleaned from the LINPACK benchmarks [2],

based on solving a dense set of linear equations of order 100. This benchmark tests not only

processing speed but also non-local and distant memory fetches, testing main memory{data

cache{CPU bottlenecks, usually the cause of peak speed degradation. Monte Carlo calculations

involve a lot of remote addressing and in this respect only are similar to linear algebra on large

matrices. However, Monte Carlo codes usually involve iterative loops over large instruction sets

and main memory{instruction cache bottlenecks can signi�cantly a�ect performance. We have

noted some anomalies between the comparison of XYZDOS and LINPACK.

Consider the comparison of an EGS4 simulation based on a realistic problem, the XYZDOS

benchmark given in Table 1. The most remarkable revelation from the benchmark timing results

is that high-end PC's (costing about $2K{$3K) and low-end UNIX workstations (costing about

$3K{$6K) have encroached upon mainframe territory in this form of scienti�c computing.

If you are lucky enough to able to choose machines based upon EGS4 demands, choose

the fastest, serial processing machines that return the highest benchmark numbers per unit of

money. Note that apart from system maintenance, the number of machines should not be a

strong factor in the determination. In the near future, network operating systems will be able

to make good use of either many slower machines or a few fast ones. If you are unable to run

your code or the XYZDOS benchmark, base your decision regarding machine speed by consulting

the above list and seeing which architecture matches most closely, especially with respect to

the size of the instruction and data caches. Failing this, use the LINPACK, Specmark, or MIPS

timing benchmarks, but keep in mind that it may not be accurate. (The author has noted that

for one architecture, the LINPACK benchmark and the XYZDOS benchmark di�ered by a factor

of 5!)

2.3 Single or double precision?

For most modern architectures, it does not cost very much extra to run applications

in double rather than single precision with the possible exception of the VAX. This feature

is true for their entire product line with double precision overheads ranging from 20%{100%!

Some architectures do not even support single precision
oating-point numbers (e.g. FPS serial

processors) and other architectures, while supporting single-precision arithmetic, do so with

some associated overhead (e.g. IBM R6000's)!

The author has found signi�cant di�erences in comparing calculated results of stopping

powers (signi�cant to the �fth digit) from VAX (CISC architectures) and IBM (CISC architec-

tures) single precision simulations. (VAX single precision
oating point numbers have slightly

more precision than their IBM counterparts). Di�erences in energy deposition accumulation

(good to about 3 digits) have never been observed.

Ray tracing of particles is done better in double precision. Unless the geometry of curved

surfaces is coded very carefully, round-o� and truncation of
oating-point numbers can cause

di�culty. The rule of thumb is \If you can a�ord it, run in double precision".

2.4 What language should I program in?

EGS4 is written in MORTRAN3, a FORTRAN pre-compiler that can convert the EGS4

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 3

MACHINE O/S FORTRAN RATIO

Normalization

VAX 11/780 FPA VMS 3.7 FORT-11 3.7 � 1

PC-based

Compaq 20 MHz 386/387 OS386 1.0 Lahey F77L-EM/32 2.0 1.1
ACAD 25 MHz 386/387 OS386 2.1.04 Lahey F77L-EM/32 3.01 1.6

Compaq 20 MHz 386/Weitek 1167 OS386 1.0 Lahey F77L-EM/32 2.0 3.0

ACAD 25 MHz 486 OS386 2.1.04 Lahey F77L-EM/32 3.01 3.7
Micronics 33 MHz 386/Weitek 3167 OS386 1.9.16 Lahey F77L-EM/32 2.01 5.0

Dell 33 MHz 486E OS386 2.1.04 Lahey F77L-EM/32 3.01 5.1

Unix Workstations

Sun 3/60 SunOS 4.0 SunFortran 1.2 -f68881 0.90

HP-9000/370/Turbo SRX HP-UX 6.5 HP Fortran V46.24(20) 1.9

SunSparcstation1 SunOS 4.0.3c SunFortran 1.2 -O3 4.7
SunSparcstation1+ SunOS 4.1.1 SunFortran 1.3 -fast -O4 -Bstatic 6.4

Decstation 3100 U-32 3.1 V1.0 -align 7.3

Okidata Vistra 800 (40 MHz i860) AT&T System V Portland Group PGF77 -O0 7.5
Decstation 5000/120 Ultrix 4.2a V3.1 10

SG Personal IRIS 4D/25 IRIX 3.2.1 3.2 F77 1.31 -static 10
IBM R6000 Model 320 AIX 3.01 xlf 1.01 -Q -O -qnorndsngl 11

SunSparcstation2 SunOS 4.1.1 SunFortran 1.3 -fast -O4 -Bstatic 11

SunSparcstation IPX SunOS 4.1.1 SunFortran 1.3 -fast -O4 -Bstatic 12
IBM R6000 Model 530 AIX 3.01 xlf 1.01 -Q -O -qnorndsngl 14

SG Personal IRIS 4D/35 IRIX 3.3.2 F77 3.3.2 -O4 -static 20

SunSparcstation 10/31 SunOS 4.1.3 SunFortran 1.3.1 -O4 -Bstatic 21
HP-9000/720 HP-UX 8.0: pre-IC2 HP Fortran 77 V8.01 -K -O 24

SGI Indigo (100 MHz R4000) IRIX 4.0.5F F77 3.10 -O3 -mips2 -static -sopt 31

HP-9000/730 HP-UX 8.07 HP Fortran 77 V8.07 -K -O 32
HP-9000/735 HP-UX 9.01 HP Fortran 77 V8.07 -K -O 53

Non-Unix Workstations

VAXstation 31/30 VMS 5.1 FORT-11 5.3 2.1
VAXstation 31/38 VMS 5.3 FORT-11 5.3 3.1

VAXstation 31/76 VMS 5.4 FORTRAN V5.8-155 6.5

DEC AXP 3000/500 OpenVMS Alpha 1.0 DEC Fortran 6.0 42

Unix Minis/Servers

Sun 4/330 SunOS 4.0.3 SunFortran 1.2 6.2

SG 280S (1 CPU - 25 MHz) IRIX 3.2.1 3.2 F77 1.31 -static 13
SG 280S (1 CPU - 25 MHz) IRIX 4.0.1 3.4.1 F77 -O3 -static 13

SG 280S (1 CPU - 33 MHz) IRIX 4.0.1 3.4.1 F77 -O3 -static 17

Non-Unix Minis/Servers

�Vax II VMS 5.2 FORT-11 5.2-33 0.72

VAX 11/780 FPA VMS 4.5 FORT-11 5.3 1.1

�Vax 3300 VMS 5.3 FORT-11 5.3 1.6

�Vax 3600 VMS 5.4 FORTRAN V5.8-155 2.1

�Vax 3600 VMS 4.7 FORT-11 4.7a 2.4

�Vax 3800 VMS 5.1 FORT-11 5.3 2.8
�Vax 3800 VMS 5.4 FORTRAN V5.8-155 3.2

VAX 4000/600 VMS 5.5 FORTRAN 5.8 31

Mainframes

VAX 8200 VMS 5.3 FORT-11 5.3 0.77

Vax 6330 (1 CPU) VMS 5.2 FORT-11 5.2-33 3.4

IBM 3090/3090E VM/HPO 4.2 CMS VSFORT 2.0 24/25
Supercomputers

Fujitsu VP2200/10 (scalar mode) UXP/M V10L10 Fujitsu FORTRAN77 EX V12 58

Exotica

Meiko (1�T800 20 MHz) MMVCS 1.4 Meiko F77 1.100 2.3

BBN TC2000 (1�MC88000 20MHz) UNIX 4.3BSD + pSOS+m Fortran-88000 3.45 -OLM -Jnone -gg 8.6

SkyBolt (i860 40 MHz) Host SKYvec F77 10
KSR1 (1�KSR1 processor 20MHz) KSR OS 1.0.6 KSR Fortran f77 -O2 -inline from *.il 11

Table 1: Monte Carlo timing comparisons for XYZDOS

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 4

MORTRAN3 source code into FORTRAN ANSI standard 77 or 66 code. There is no vacillation

regarding MORTRAN3. There are those who HATE it and those who LOVE it. If you prefer

you can write all your code in FORTRAN although it will take you longer and it will be

di�cult to make your code readable. To compensate for all the mistakes you make you will

have direct access to FORTRAN debugging tools. Experienced MORTRAN3 programmers

write more readable, more compact code than is possible in FORTRAN. On the downside, it is

more di�cult to debug and you use debugging tools indirectly since references to FORTRAN

statements are only indirectly related to the MORTRAN source.

To give you an example: The NRCC statistical analysis code takes about 100 lines of

MORTRAN3 source (including comments) which translates into about 600 lines of FORTRAN

(with no comments). This code was conceived, written and debugged in one working day. It is

IMPOSSIBLE to conceive, write and debug 600 lines of FORTRAN code in one day.

It is also possible to write usercodes in any language (e.g. C, C++) and communicate

with EGS using standard interface routines. The future may have EGS being distributed in

standard C with a MORTRAN-like pre-compiler to include all the programming power inherent

in MORTRAN.

2.5 Should I use non-standard FORTRAN?

Avoid non-standard FORTRAN coding like the plague. Although all compilers have

FORTRAN-extensions that make coding faster and more readable, you will duplicate your ef-

forts when you switch to a di�erent machine. There are di�erences you can not avoid. They are:

� System timing calls like CPU time used, total elapsed time, time and date routines.

Unfortunately, these are not standardised like mathematics subroutines. For example,

VAX/VMS machines can obtain the date via the call

CALL DATE(DATEN)

where DATEN is a CHARACTER*9 variable while IBM/CMS machines obtain the date via

CALL DATE(DAOFWK,DATEN)

where DAOFWK is a CHARACTER*8 variable (day of the week) and DATEN is a CHARACTER*8

variable. Note that in this case, unless you knew to make the change, the compiler would

not complain (most FORTRAN's do not check subroutine interfaces) and you would get

unexpected results.

� I/O operations are not standardised. For example, to open a �le with a speci�ed name

in VAX/VMS one issues the call

OPEN(...NAME='filename'...)

and on IBM/CMS

OPEN(...FILE='filename'...).

There are a number of non-standard quali�ers for both OPEN, CLOSE, READ and WRITE

statements.

� Be aware of the di�erences in machine precision. For example, a PRESTA single precision

convergence routine can work to 1 part in 107 on the VAX but only 5 parts in 107 on an

IBM owing to di�erences in
oating-point binary representations.

� Pseudo random number generation usually depends upon machine architecture. This

topic is dealt with in detail in the next section.

If you use di�erent machines it is easy to write macros that can covert your code to run on any

machine and design user codes with this general application in mind.

The UNIX FORTRAN world has made generous concessions to VAX/VMS FORTRAN.

Most UNIX-based FORTRAN compilers allow many of the VAX/VMS FORTRAN extensions

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 5

(which are seductive in their simplicity and power). However, other conversions are not available

(yet). Yet, the portability of standard ANSI code to other architectures should be motivation

enough for adoption of standard coding practice.

3 Random number generators, state-of-the-art ca. 1988

The pseudo random number generator is the \soul" of a Monte Carlo calculation. It is

what generates the pseudo-random nature of Monte Carlo simulations thereby imitating the

true stochastic nature of particle interactions. Consequently, much mathematical study has

been devoted to RNG's [3, 4]. The paper by Marsaglia [3] is the seminal work on the topic,

allowing one to determine when one had a \good" RNG, while Knuth's book [4] reviews the

�eld and supplies a set of good RNG's.

The operative phrase to be used is, \Use Extreme Caution."

� DON'T FIDDLE with RNG's unless you thoroughly understand the underlying math-

ematics and have the ability to test your new RNG completely.

� DON'T TRUST RNG's that come bundled with standard mathematical packages. Sci-

entists have wasted YEARS of their life trying to understand bugs in their Monte Carlo

code that were really due to bad RNG's.

� DO USE the RNG's that are distributed with the EGS4 code. They have been thoroughly

tested. Employing \in-line" RNG's �a la EGS4 will also save you about 20% CPU time.

(Some modern compilers will automatically make subroutines \in-line" at high levels of

compiler optimisation.) The overhead costs of function and subroutine calls is surprisingly

large (about 20{100 machine cycles).

The gathering of random numbers into planes is a well known artefact of the type of

RNG that EGS4 employs by default. Marsaglia's paper [3] describes how random numbers fall

into (n� 1)-hyperplanes when seeding n-dimensional hypercubes (for n > 2). An example of a

bad RNG with this characteristic is shown in �g. 1. This RNG was actually distributed with

standard mathematical packages provided with mainframe and mini-computers. However, this

artefact can be seen only under special circumstances. If the view angle is rotated by only 10

degrees as in �g. 2, the artefact is not apparent. Good RNG's maximise the number of planes

giving the illusion of randomness. The one distributed with EGS4 code gives over 1000 planes

in a 3D cube.

3.1 Linear congruential RNG's

The standard method of random number generation is the linear congruential random

number generator (LCRNG). It has the form:

Xn = (aXn�1 + b)mod 2k ; (1)

producing a series of pseudo random integers, X1; X2; X3::: starting from a \seed" X0. The

factor a is the constant multiplier, b is also a constant and k is usually the integer word size of

the computer. If b is an odd number, the sequence length of this RNG is 2k. Standard EGS4

sets b = 0. This version is called a multiplicative congruential (MC) RNG with a sequence

length of 2k�2. The constant multiplier a is a magic number. DO NOT change it unless

you know what you are doing. There are guidelines for choosing potentially good candidates,

but every potential multiplier has to be tested \experimentally". For k = 32, EGS4 employs

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 6

Marsaglia planes − View 1

XY

Z

z

0

1

x
0

1 y
0

1

Figure 1: An example of the Marsaglia artefact produced with a catastrophically bad RNG. In

this case a 3D unit cube was seeded and the data gathers into 15 planes.

Marsaglia planes − View 2

XY

Z

z

0

1

x
0

1 y
0

1

Figure 2: This is the same data as the previous �gure only with a 10 degree di�erence in view

angle.

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 7

a = 663608941. Knuth [4] claims that a = 69069 (much easier to remember) is best. A

particularly bad one is a = 65539 which was employed to produce the data in �gs. 1 and 2.

LCRNG's \use up" every integer represented by the computer in a well-de�ned order and

then start over. MCRNG's \use up" half of the odd integers in sequence. Therefore, it is unwise

to use up more than, say 1/10th, of the sequence. For example, the last half of the sequence

will be anticorrelated with the �rst half. If one requires more than 108 random numbers for a

simulation (not an uncommon requirement) then one is well advised to employ long sequence

random number generators described in the next sections.

Actually, a given Monte Carlo history may consume thousands of random numbers. It

is important, if the RNG cycles, that no history starts with the same random number as a

previous one. Rejection techniques, which \discard" random numbers, could \synchronise" a

recycled RNG. It is di�cult and expensive to test for this and much safer to employ a long

sequence RNG.

3.2 Generic 32 and 64-bit RNG's

The following MORTRAN3 code will produce a 230 (about 109) sequence of random

numbers on any 32-bit computer with two's-complement integer circuitry (i.e. hard-wired

integer arithmetic operations) allowing integer over
ows to occur. (You may have to sup-

press certain classes of arithmetic exceptions. For example, on VAX/VMS one employs the

/CHECK=NOOVERFLOW in the FORTRAN compilation command.)

"Initialisation:"

IXX=9876543421; "Default RNG seed, declare IXX in common block RANDOM"

"Iteration:"

IXX=IXX*663608941; "Common RANDOM must be declared where used"

RNG=0.5+IXX*0.23283064E-09; "0.23283064E-09 IS 2**(-32)"

This RNG produces the following output on a VAX:

IXX,OLD = 987654321 IXX,NEW = -1879502499 RNG = 6.2394232E-02

IXX,OLD = -1879502499 IXX,NEW = 89393817 RNG = 0.5208136

IXX,OLD = 89393817 IXX,NEW = 1262367013 RNG = 0.7939177

IXX,OLD = 1262367013 IXX,NEW = -1401290047 RNG = 0.1737368

IXX,OLD = -1401290047 IXX,NEW = 698583597 RNG = 0.6626517

IXX,OLD = 698583597 IXX,NEW = -2109875415 RNG = 8.7563396E-03

IXX,OLD = -2109875415 IXX,NEW = 217636469 RNG = 0.5506724

IXX,OLD = 217636469 IXX,NEW = -1336857135 RNG = 0.1887387

IXX,OLD = -1336857135 IXX,NEW = -1956069379 RNG = 4.4567108E-02

IXX,OLD = -1956069379 IXX,NEW = 2070947001 RNG = 0.9821799

IXX,OLD = 2070947001 IXX,NEW = 930943173 RNG = 0.7167521

IXX,OLD = 930943173 IXX,NEW = 1414265313 RNG = 0.8292843

IXX,OLD = 1414265313 IXX,NEW = -1359510835 RNG = 0.1834642

IXX,OLD = -1359510835 IXX,NEW = 1756985161 RNG = 0.9090800

IXX,OLD = 1756985161 IXX,NEW = 1050548245 RNG = 0.7445998

IXX,OLD = 1050548245 IXX,NEW = 952334065 RNG = 0.7217326

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 8

IXX,OLD = 952334065 IXX,NEW = -434396515 RNG = 0.3988592

IXX,OLD = -434396515 IXX,NEW = 1816224473 RNG = 0.9228727

IXX,OLD = 1816224473 IXX,NEW = 1276396645 RNG = 0.7971843

IXX,OLD = 1276396645 IXX,NEW = 110212353 RNG = 0.5256608

IXX,OLD = 110212353 IXX,NEW = -7475347 RNG = 0.4982595

IXX,OLD = -7475347 IXX,NEW = 1595438953 RNG = 0.8714671

IXX,OLD = 1595438953 IXX,NEW = 2026694069 RNG = 0.9718765

IXX,OLD = 2026694069 IXX,NEW = 908182545 RNG = 0.7114527

IXX,OLD = 908182545 IXX,NEW = -389793475 RNG = 0.4092441

IXX,OLD = -389793475 IXX,NEW = 382223609 RNG = 0.5889934

IXX,OLD = 382223609 IXX,NEW = 1262111749 RNG = 0.7938583

IXX,OLD = 1262111749 IXX,NEW = 931116065 RNG = 0.7167923

IXX,OLD = 931116065 IXX,NEW = -1665052659 RNG = 0.1123247

IXX,OLD = -1665052659 IXX,NEW = 1944279945 RNG = 0.9526880

IXX,OLD = 1944279945 IXX,NEW = -895236267 RNG = 0.2915616

IXX,OLD = -895236267 IXX,NEW = 191403313 RNG = 0.5445645

IXX,OLD = 191403313 IXX,NEW = 803537885 RNG = 0.6870883

IXX,OLD = 803537885 IXX,NEW = -912962791 RNG = 0.2874343

IXX,OLD = -912962791 IXX,NEW = 2004199333 RNG = 0.9666390

IXX,OLD = 2004199333 IXX,NEW = 1566209857 RNG = 0.8646617

IXX,OLD = 1566209857 IXX,NEW = -927193939 RNG = 0.2841209

IXX,OLD = -927193939 IXX,NEW = 775070633 RNG = 0.6804602

IXX,OLD = 775070633 IXX,NEW = 2022784245 RNG = 0.9709662

IXX,OLD = 2022784245 IXX,NEW = 782527057 RNG = 0.6821963

IXX,OLD = 782527057 IXX,NEW = 1439728253 RNG = 0.8352129

IXX,OLD = 1439728253 IXX,NEW = 1154020665 RNG = 0.7686914

IXX,OLD = 1154020665 IXX,NEW = 1302124357 RNG = 0.8031745

IXX,OLD = 1302124357 IXX,NEW = 578190945 RNG = 0.6346206

IXX,OLD = 578190945 IXX,NEW = -797381299 RNG = 0.3143452

IXX,OLD = -797381299 IXX,NEW = 263114697 RNG = 0.5612612

IXX,OLD = 263114697 IXX,NEW = 1448330901 RNG = 0.8372158

IXX,OLD = 1448330901 IXX,NEW = 2062664561 RNG = 0.9802516

IXX,OLD = 2062664561 IXX,NEW = -592890595 RNG = 0.3619569

IXX,OLD = -592890595 IXX,NEW = 1544799065 RNG = 0.8596766

The employment of generic RNG's allows one to synchronise histories on di�erent ma-

chines (insofar as di�erences in
oating point precision allow this to happen), which may be

useful for debugging purposes.

Some processors mock-up integer arithmetic using
oating-point processors. These ma-

chines require special code. An example is given later for the discussion of the FPS-264.

If 64-bit two's-complement integer arithmetic were available, the following formula would

serve as a generic 64-bit RNG:

IXX_64 = 6364136223846793005*IXX_64;

RNG_64 = 0.5 + IXX_64*5.421010862E-20; "5.421010862E-20 IS 2**(-64)"

This RNG produces a sequence length of 262 (about 4.6�1018). This sequence length

should be long enough for any practical problem. This RNG requires machine dependent

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 9

coding since INTEGER*8 arithmetic is not standard FORTRAN. An example for the VAX is

given following.

3.3 VAX RNG's

VAX employs the generic 32-bit RNG. The 64-bit version described above takes the

form [5]:

"Declarations:"

COMMON/RANDM1/LNGXA1;

COMMON/RANDM2/LNGXB1;

COMMON/RANDM3/XAMSK;

COMMON/RANDM4/FFOUR,FTWO;

REAL*8 LNGXA1,LNGXB1,ZERO8;

INTEGER*4 LNGXA2(2),FFOUR(3),LNGXB2(2),WKREA1,WKREA2,WKREA3,XAMSK(3),IXX,JXX;

INTEGER*2 LNGXA4(4),FTWO(4),LNGXB4(4),XAMSK1,XAMSK2,XAMSK3;

EQUIVALENCE (LNGXA1,LNGXA2),(LNGXA2,LNGXA4);

EQUIVALENCE (LNGXB1,LNGXB2),(LNGXB2,LNGXB4);

EQUIVALENCE (LNGXB4(1),WKREA1);

EQUIVALENCE (LNGXB4(2),WKREA2);

EQUIVALENCE (LNGXB4(3),WKREA3);

EQUIVALENCE (XAMSK(1),XAMSK1);

EQUIVALENCE (XAMSK(2),XAMSK2);

EQUIVALENCE (XAMSK(3),XAMSK3);

EQUIVALENCE (XAMSK(1),ZERO8);

EQUIVALENCE (IXX,LNGXA2(1));

EQUIVALENCE (JXX,LNGXA2(2));

"Initialise the constant multiplier:"

DATA FFOUR/Z00007F2D,Z00004C95,Z0000F42D/;

DATA FTWO/Z7F2D,Z4C95,ZF42D,Z5851/;

"Initialise the seed:"

DATA IXX,JXX/987654321,987654321/;

"Select a new random number:"

ZERO8=0.0D0;

XAMSK(3)=0;

WKREA3=0;

XAMSK1=LNGXA4(1);

XAMSK2=LNGXA4(2);

XAMSK3=LNGXA4(3);

WKREA1=FFOUR(1)*XAMSK(1);

WKREA2=WKREA2+FFOUR(1)*XAMSK(2);

WKREA3=WKREA3+FFOUR(1)*XAMSK(3);

LNGXB4(4)=LNGXB4(4)+FTWO(1)*LNGXA4(4);

WKREA2=WKREA2+FFOUR(2)*XAMSK(1);

WKREA3=WKREA3+FFOUR(2)*XAMSK(2);

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 10

LNGXB4(4)=LNGXB4(4)+FTWO(2)*LNGXA4(3);

WKREA3=WKREA3+FFOUR(3)*XAMSK(1);

LNGXB4(4)=LNGXB4(4)+FTWO(3)*LNGXA4(2);

LNGXB4(4)=LNGXB4(4)+FTWO(4)*LNGXA4(1);

LNGXA1=LNGXB1;

RNG=0.5+0.23283064E-09*LNGXB2(2);

One can see that much calculation is required to simulate 64-bit integer arithmetic and

handle over
ow properly. Use of this RNG slows down a typical simulation by approximately

20%. As a rule of thumb, we used to employ this RNG for any simulation using more than

about 106 histories. However, the lagged-Fibonacci RNG (described below) has supplanted the

64-bit RNG for all long-sequence calculations.

3.4 IBM RNG's

The 32-bit IBM RNG supplied with EGS4 makes elegant use of IBM's machine instruc-

tions for doing unnormalised
oating point arithmetic. In e�ect, the following code prenor-

malises a
oating point double precision number and scrambles the low-order 32-bits via integer

random number generation.

"Declarations:"

INTEGER IXX; "IXX should reside in a common block"

INTEGER JX(2);REAL*8 DRN; "These are defined in the local subroutine"

EQUIVALENCE(JX(1),DRN);

"Initialisation:"

DATA JX(1)/Z46000000/;

IXX=987654321;

"Iteration:"

IXX=IXX*663608941;JX(2)=IXX;RNG=DRN+0.0D0;

This method employs four memory fetches, one integer multiplication, one double pre-

cision addition (to normalise the
oating point number) and three stores. The IBM could as

easily use the 32-bit generic method that requires four memory fetches, one integer multipli-

cation, one integer-to-
oating-point conversion, one
oating point multiplication, one
oating

point addition and two stores. Clearly, the IBM special coding saves one numerical data type

conversion and a
oating point multiplication and is clearly more economical.

3.5 FPS-264 RNG

The FPS-264 is an example of a machine that does not have integer arithmetic. It is

simply a double precision number cruncher. It does not even support single precision
oat-

ing point operations. The FPS-264 FORTRAN handles integer operations like
oating point

operations within the 53-bit mantissa and the high order bits \spilled" like normal integer op-

erations. (This is not documented in the FPS manuals!) The following RNG simulates 48-bit

arithmetic employing the 48-bit multiplier times 32. This �lls the 53-bit mantissa with the low

order bits of the integer multiplication. The 53-bit integer is then normalised to �t in the range

0 <RNG< 1 by multiplication by 2�53. The random integer is then shifted so that the low order

48 bits of the integer multiplication are properly aligned.

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 11

"Declarations:"

INTEGER IXX; "Store in common. FPS treats as a REAL*8"

"Initialisation:"

IXX=987654321;

"Iteration:"

IXX=IXX*997353120; "This is Knuth's 48-bit multiplier times 32"

RNG=0.5+IXX*0.1110223024625157E-15; "0.1110223024625157E-15 is 2**(-53)"

IXX=IXX/32; "Shift to the right by 5 bits to align properly"

4 A universal random number generator, state-of-the-art since

1988

A new \universal" lagged-Fibonacci pseudo random number generator has been devel-

oped by Marsaglia, Zaman and Tsang [6, 7]. It will provide identical sequences on all machines

that support single-precision real numbers with 24-bit fractional parts. The sequence length is

2144 (about 2� 1043), long enough for any practical calculation. The MORTRAN3 source code

is:

"Declarations:"

REAL*4 U(97),C,CD,CM;INTEGER IXX,JXX;

"Initialisation:"

IF((IXX.LE.0).OR.(IXX.GT.31328)) IXX=1802; "SETS MARSAGLIA DEFAULT"

IF((JXX.LE.0).OR.(JXX.GT.30081)) JXX=9373; "SETS MARSAGLIA DEFAULT"

I = MOD(IXX/177,177) + 2;

J = MOD(IXX, 177) + 2;

K = MOD(JXX/169,178) + 1;

L = MOD(JXX, 169) ;

DO II=1,97[

S=0.0;T=0.5;

DO JJ=1,24[

M=MOD(MOD(I*J,179)*K,179);

I=J;J=K;K=M;L=MOD(53*L+1,169);

IF(MOD(L*M,64).GE.32) S=S+T;

T=0.5*T;

]

U(II)=S;

]

C = 362436./16777216.;

CD = 7654321./16777216.;

CM = 16777213./16777216.;

IXX = 97;JXX = 33;

"Iteration:"

RNG=U(IXX)-U(JXX); IF(RNG.LT.0.) RNG=RNG+1.; U(IXX) = RNG;

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 12

IXX=IXX-1; IF(IXX.EQ.0) IXX=97;

JXX=JXX-1; IF(JXX.EQ.0) JXX=97;

C=C-CD; IF(C.LT.0.) C=C+CM;

RNG=RNG-C; IF(RNG.LT.0.) RNG=RNG+1.;

The salient features to note are:

The declarations de�ne 100 real single-precision numbers and 2 integers. The \state" of this

RNG is de�ned as the state of all these variables. Therefore, if you wish to restart a Monte

Carlo run at some point you have to have stored the entire state of the RNG, not just one or

two integer seeds. This is a minor price to pay for such a powerful RNG.

The initialisation code is best put into a separate subroutine. This initialisation is performed

only once. It speci�es the initial state of the RNG, all 102 numbers, based upon the two in-

teger seeds, IXX and JXX. If a Monte Carlo run is restarted, there is no need to repeat the

initialisation. IXX and JXX are restricted to the ranges 1 � IXX � 31328 and 1 � JXX � 30081.

Unique pairs of IXX and JXX produce independent random number sequences. Thus, it is con-

ceivable that one could run independent Monte Carlo runs on 31; 328� 30; 081 = 942; 377; 568

computers and combine results at the end with the guarantee that each computer's result is

independent of any other's. Besides the intriguing scenario of employing every computer in

the world to perform one's application this feature could be employed in parallel or distributed

computing environments or enable a joint Monte Carlo project to be carried out among 2 or

more institutions, without the danger that simulations have been duplicated.

Note that the iteration loop involves no multiplications. (Modern architectures multiply and

add equally fast, usually in one clock cycle.) Each iteration requires 3{6 real additions or

subtractions, 2 integer subtractions, 1{3 assignments. Moreover, there is a great deal of in-

dependence among these instructions allowing compilers to make advantage of \pipelining"

techniques for increased speed. On a typical computer this RNG takes only about 50% longer

than the fastest MCRNG. Clearly, lagged-Fibonacci RNG's represent the future of random

number generation.

5 Doing it in a UNIX environment

To obtain EGS for use in a UNIX environment, follow the instructions given in the

lecture, \How to manage the EGS4 system".

6 Doing it on a PC

This section describes how you would get EGS4 started on a PC/386/387/486 with a

DOS operating system. Much of the bootstrapping procedure is analogous for other machines.

1. Purchase a 32-bit compiler and 32-bit addressing operating system. We employ1 :

1Sue Walker has informed me that she has installed and compiled EGS4 codes using Microsoft 32-bit Power-

station Fortran although timing benchmarks are not yet available.

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 13

FORTRAN and LINKER:

Lahey Fortran F77L-EM/32 Version 2.0

P.O. Box 6091, Incline Village, NV 89450-6091, U.S.A.

(702)831-2500

Operating system:

Lahey/Phar Lap

(comes with Lahey Fortran)

Note that this software requires at least 2MB (4 or more is better) of memory and DOS

Version 3.0 or higher. The batch procedures distributed with PC/EGS4 refer to the above

FORTRAN, LINKER and OS. If you have other ones you will just have to change the

references to the compiler and linker in the various batch procedures. These are clearly

indicated.

2. Obtain the latest PC/EGS4 by writing to:

Sue Walker

Lanzl Institute

3876 Bridge Way North

Suite 300

Seattle, Washington 98103-7951

U.S.A. Tel: 206 545 1141

Fax: 206 545 1347

A nominal fee will be charged for covering
oppy disks and postage. The distribution will

arrive on 3� 5
1

4 " 1.2MB
oppies.

3. Once you have received your
oppies, �ll out the form to register with W. R. Nelson that

you are now an EGS4 user and to receive a free copy of the EGS4 manual. Ask for a

MORTRAN3 manual as well.

4. Install the EGS4 system on your hard disk by copying INSTALL.BAT from Diskette #1 to

the root directory where you want EGS4 located. Then type:

INSTALL

and follow directions. This installation procedure places the �les in an organised directory

structure. The recommended structure is:

... root directory for EGS4

...\EGS4 (home of the EGS4 system, batch procedures)

...\EGS4\APPENDIX (text versions of SLAC-265 appendices)

...\EGS4\BENCHMRK (Timing benchmark codes from NRCC)

...\EGS4\EXAMPLES (User code examples from SLAC)

...\EGS4\TUTOR (Tutorial codes from NRCC)

...\MORTRAN3 (home of the MORTRAN3 pre-compiler, batch procedures)

...\PEGS4 (home of PEGS4, batch procedures)

...\PEGS4\DAT (output directory for data �le output from PEGS4)

5. FORTRAN compile the ...\EGS4\MORTRAN3\MORTRAN3.FOR source code employing the

batch command procedure \EGS4\MORTRAN3\MAKEMOR3.BAT.

6. Bootstrap MORTRAN3 by running ...\EGS4\MORTRAN3\RAWTOHEX.BAT. The produces a

RUNNING EGS4 ON ON DIFFERENT ARCHITECTURES 14

Hexadecimal data �le, ...\EGS4\MORTRAN3\MORTRAN3.DAT, that looks like:

v....2C USER F77 11JUN85

00002884000013D9000013D9000000000001B6F10001B6F20001B6F1000179E2000179E300000005

000000000000000000000211000000000000000000000000000003E8000000000000000000000005

000000010000000000001E32000100000000

00000000000000040000065900000001000028830000000000000218000000500000019400000000

.

.

.

Delete the �rst line of non-hex data, saving the �le as ...\EGS4\MORTRAN3\MORTRAN3.DAT.

7. Using the batch procedure ...\EGS4\EGS4BCOM.BAT, attempt toMORTRAN/FORTRAN/LINK

some of the ...\EGS4\TUTOR\TUTORn.MOR codes.

8. Build the PEGS4 execute module utilising the batch procedure ...\EGS4\MORTRAN3\MOR3BCOM.BAT.

This batch procedure may be employed to MORTRAN compile any MORTRAN source

code. You may �nd it preferable to employ MORTRAN for non-EGS4 use.

9. Using the ...\EGS4\PEGS4*.INP's, attempt to create data sets needed for the ...\EGS4\TUTOR\TUTORn

codes.

10. Run the ...\EGS4\TUTOR\TUTORn codes using the ...\EGS4\EGS4BRUN.BAT batch proce-

dure.

11. Create your own user codes using ...\EGS4\TUTOR\TUTORn.MOR,...\EGS4\EXAMPLES*.MOR,

or ...\EGS4\BENCHMRK\XYZDOS.MOR as starting points.

References
[1] A.F. Bielajew and D.W.O. Rogers, A standard timing benchmark for EGS4 Monte Carlo Calcula-

tions, Medical Physics 19 303 { 304 (1992).

[2] J.J. Dongarra, Performance of various computers using standard linear equations software in a

Fortran environment, Comp. Arch. News 16 47 (1988).

[3] G. Marsaglia, Random numbers fall mainly in the planes, Nat. Acad. Sci. 61 25 { 28 (1968).

[4] D.E. Knuth, The art of computer programming, Vol. II, (Addison Wesley, Reading Mass.) (1981).

[5] A.F. Bielajew and D.W.O. Rogers, RNG64|a 64-bit random number generator for use on a VAX

computer, National Research Council of Canada Report PIRS-0049 (1986).

[6] G. Marsaglia, A. Zaman and W.W. Tsang, Toward a Universal Random Number Generator, Statis-

tics and Probability Letters 8 35 { 39 (1990).

[7] G. Marsaglia and A. Zaman, A New Class of Random Number Generators, Annals of Applied

Probability 1 462 { 480 (1991).

