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Abstract

The initial formulation of a Monte Carlo scheme for the transport of high-energy (>� 100 keV)

electrons was established by Berger in 1963. Calling his method the \condensed history theory",

Berger combined the theoretical results of the previous generation of research into developing ap-

proximate solutions of the Boltzmann transport equation with numerical algorithms for exploiting

the power of computers to permit iterative, piece-wise solution of the transport equation in a com-

putationally intensive but much less approximate fashion. The methods devised by Berger, with

comparatively little modi�cation, provide the foundation of all present day Monte Carlo electron

transport simulation algorithms. Only in the last 15 years, beginning with the development and

publication of the PRESTA algorithm, has there been a signi�cant revisitation of the problem

of simulating electron transport within the condensed history framework. Research in this area

is ongoing, highly active, and far from complete. It presents an enormous challenge, demanding

derivation of new analytical transport solutions based on underlying fundamental interaction mech-

anisms, intuitive insight in the development of computer algorithms, and state of the art computer

science skills in order to permit deployment of these techniques in an e�cient manner. The EGS5

project, a modern ground-up rewrite of the EGS4 code, is now in the design phase. EGS5 will take

modern photon and electron transport algorithms and deploy them in an easy-to-maintain, modern

computer language|ANSI-standard C++. Moreover, the well-known di�culties of applying EGS4

to practical geometries (geometry code development, tally routine design) should be made easier

and more intuitive through the use of a visual user interface being designed by Quantum Research,

Inc., work that is presented elsewhere in this conference. This report commences with a historical

review of electron transport models culminating with the proposal of a new, previously unpublished

algorithm, for the EGS5 project.

1 Introduction

Berger's founding paper[1], Monte Carlo Calculation of the penetration and di�usion of fast

charged particles, ushered in the modern era of electron transport in Monte Carlo applications. The

principle di�culty in applying the Monte Carlo method to electron transport lies in the fact that

electrons interact frequently until their kinetic energy is exhausted. A relativistic electron may have

104{105 elastic interactions and 105{106 inelastic interactions before falling to an energy so low that it

stops ionizing or exciting atoms individually or collectively in the material through which it is being

transported. Clearly, it was not feasible to model all of these interactions in an analog Monte Carlo

code in the early 1960's, the era when Berger issued his famous report1. To overcome this di�culty,

Berger devised the \condensed history theory" (CHT). The CHT gathers together many elastic and

1Analog calculations are feasible today only in 1D geometries and are used, primarily, to study the physics of multiple

interactions. Analog calculations are not feasible for many applications requiring 3D geometries or applications that may

require millions or billions of primary source particles.
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inelastic interactions into \virtual" interactions, permitting e�ciency gains of up to 3 or 4 orders of

magnitude.

The computational speed-up achieved with Berger's CHT is impressive, but comes at a cost. The

electron transport becomes approximate! Consider, for example, an electron initially positioned at the

origin, ~x = ~0, directed along the ~z-axis with some initial energy E0. This electron is to be moved a

total prescribed pathlength of some distance, say, t. For the moment, the method we adopt to choose

t is not pertinent to the discussion2. Let us now ask, after the electron is transported a distance t,

where will its path terminate? The only thing we can say with absolute certainty is that its path will

terminate at some position ~x, such that ~x � t. The direction of the electron will be (�;�)'s selected

from an elastic multiple scattering theory and the electron will have a lower energy, E, determined

from an inelastic multiple scattering theory. The �nal position of these electrons should look something

like the depiction in �gure 1. Because of the energy dependence of the di�erential scattering cross

t

Figure 1: The termination points of 1000 electrons starting at the origin, ~x = ~0, directed along the ~z-axis, and

transported a total pathlength t.

section, the distribution that one observes depends on the energy of the electron. At high energies

where the elastic scattering is forward directed, there is a strong clustering of the endpoints in the

forward direction with a few electrons scattered widely and even fewer that terminate in the reverse

hemisphere. At lower energies where the scattering becomes more isotropic, the sphere gets populated

more uniformly.

2The distance t is usually chosen to satisfy a number of constraints: 1) t is the distance to a discrete event, like

a M�ller or bremsstrahlung interaction, 2) t is small enough so that the energy of the electron over the pathlength is

approximately constant, 3) t is small enough so that the determination of the scattering angle is accurate.
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2 Transport Mechanics

Given an elastic scattering cross section of arbitrary form and ignoring energy losses along the

transport step, the directions of the electrons after a pathlength t is known exactly from the multiple

scattering theory of Goudsmit and Saunderson[2, 3] or Lewis's adaptation[4], assuming that the elec-

tron loses energy continuously (an approximation in itself that only applies at high energies). Other

successful multiple scattering theories make assumptions which are rigorously applicable only for small

angles, for speci�c forms of the elastic cross section, or for a restricted range of t[5, 6, 7, 8, 9, 10, 11].

While the direction is well characterized, the ending position is not. Indeed, there is very little theo-

retical development along these lines and that which exists is not accurate enough for general-purpose

Monte Carlo. Therefore, we must \invent" a scheme to give a recipe for where to place the electron

at the end of the step and how to deduct energy losses. These schemes have come to be known as

\transport mechanics".

Although transport theory solutions derived from the Boltzmann equation directly have not been

successful in predicting the coupled space-angle-energy distributions, they do provide expressions for

the moments of spatial distributions and the couplings of moments between space and angle which

may be evaluated easily, independent of the form of the scattering cross sections employed. This

development, attributed to Lewis[4], may be employed to evaluate a mechanics scheme once it is

devised. In addition, Larsen has developed an analysis[12] that predicts the convergence rate of a

mechanics scheme compared to the solution obtained by analog (event-by-event) simulation. The

dependence of Monte Carlo tallies on electron step-size is known as \step-size dependence" and is

a function of the nature of the tally, the mechanics scheme employed and the treatment of electron

transport in the vicinity of interfaces where the interaction cross sections or densities change[13, 14].

It should be mentioned that Larsen convergence requires that the multiple elastic scattering scheme

be robust (exhibit no numerical or physical artifacts) as the pathlength is reduced to zero. This limit

is problematic for both the original implementations of Goudsmit-Saunderson theory[2, 3] and Moli�ere

theory[5, 6], although the di�culties with both these theories have now been treated successfully[10,

11].

2.1 ETRAN, ITS, MCNP

Berger[1] recommended the following scheme for determining the position of the endpoint of a

transport step:

x+ iy =
t

2

0
@sin�ei� + k

s
hcos2�i

6

1
A

z =
t

2
(1 + cos�) (1)

where <(k) and =(k) are two independent random numbers selected according to a Gaussian

distribution with zero mean and unit variance. This scheme (and those that follow) assume that the

electron starts o� at the origin and is initially directed along the ~z-axis. We generalize to other starting

positions and orientations through 3D translation and rotation.

However, the above scheme has not been implemented in ETRAN[15, 16]. Instead, the simple and

practical scheme ~x = tẑ is employed. That is, the electron is placed on the sphere along the line of

its initial direction and is then de
ected according to the theory of Goudsmit and Saunderson[2, 3].

The energy is considered constant along the pathlength and an energy loss mechanism, the theory

of Blunck and Leisegang[17], an adaptation of Landau theory[18], is applied. The ITS Monte Carlo

code[19, 20, 21] and the MCNP Monte Carlo code[22, 23, 24] use the same mechanics scheme as

ETRAN.
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2.2 EGS4, PRESTA

The EGS4 Monte Carlo code[25, 26, 27] employed a small variation on the ETRAN theme. The

EGS4 mechanics is expressed as ~x = f(t; Z;E)tẑ where the function f(t; Z;E) is called a pathlength

or detour correction. The idea behind this scheme comes from the recognition that the forward

penetration distance z must be shorter than t. An approximate theory based upon the developments

of Yang's[28] adaptation of Fermi-Eyges theory[29] is employed. It has subsequently been shown that

the amount of correction applied by this method over-predicts by a factor of about two[30], one of the

motivating reasons for the development of the Parameter Reduced Electron-Step Transport Algorithm

(PRESTA)[30, 14].

PRESTA's mechanics scheme can be summarized as:

x+ iy =
t

2
sin�ei�

z = tf 0(t; Z;E) ; (2)

which introduces a more robust detour correction, f 0(t; Z;E), and a lateral transport that is correlated

to the angle, as suggested by Berger[1].

2.3 PENELOPE

Primarily intended to address the problems of low-energy electron transport (1 keV < E < 100

keV) but suitable for applications up to 1 GeV, the PENELOPE (PENetration and Energy LOss of

Positrons and Electrons) code[31, 32, 33] is a relatively new arrival on the e�
 Monte Carlo scene.

PENELOPE's mechanics can be expressed as:

x+ iy = tr sin�ei�

z = t[(1� r) + r cos�(t)] (3)

where r is a random number sampled uniformly on [0; 1]. This mechanics is also known as the \random

hinge" because it can be visualized as a hinge (de
ection) placed randomly along the track. For very

low computational cost, indeed fewer calculation than the Berger 1963 or PRESTA mechanics, the

random hinge �lls in the entire transport sphere realistically and demonstrates superior performance

with respect to the Lewis moments[34]. The PENELOPE mechanics also is the only method which

has the property h~x(� = �)i = ~0, a property that can be derived from a Lewis-like moments analysis

but without integrating over the scattering angle[35].

2.4 PRESTA-II, EGSnrc

It takes a great deal of computational e�ort to improve upon the PENELOPE mechanics. The

PRESTA-II mechanics[36, 37, 38] now incorporated into the latest National Research Council release

of EGS4 called EGSnrc[39] has adopted the following scheme:

x = t
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where the �nal direction implied by (�;�) corresponding to a pathlength t is formed from the vectorial

sum of two t=2 scatterings (both from the original forward direction), (�1; �1) and (�2; �2). The factor

� is chosen[34] to make the spatial-angular moments conform closely to the predictions of Lewis[4].

Note that this technique requires two samples of the multiple scattering angular distribution and

two rotations. Additionally, the EGSnrc implementation randomizes the �xed 1/3, 1/6 step fractions
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according to a recipe that can be found in the reference[39]. PENELOPE's random hinge iterated

twice appears to perform as well, although a moments analysis of a two-step random hinge has not

been undertaken.

The PRESTA-II mechanics adds an important new physical feature. The �nal direction implied by

(�;�) and the �nal direction with respect to the starting point ~x=j~xj are now decoupled, as physically

they should be. (They are strongly correlated but not rigidly coupled.)

2.5 An extension to PENELOPE's mechanics

The PRESTA-II mechanics removes the rigid coupling between the direction and position vector,

but requires two samplings of the multiple scattering angle, which is typically the most computationally

costly part of the transport algorithm. Moreover, the �ve moments hzi, hx sin� cos�+ y sin� sin�i,
hz cos�i, hx2 + y2i, and hz2i can not all be perfectly preserved by the PRESTA-II/EGSnrc scheme.

A new mechanics scheme has been found[40] which does have all these features and requires only one

sampling of the multiple scattering angle. This scheme takes the form:

x+ iy = t[fr sin�e�1 + � cos�e�2 ]

z = t[k(1� r) + c+ (kr + d) cos�] ; (5)

where the �ve constants f; �; k; c; d can be �xed so as to reproduce the above �ve moments exactly. This

improvement in moment compliance is obtained with only a single sampling of the multiple-scattering

angle, although there are two azimuthal angle samplings (which are relatively inexpensive). However,

in initial tests of this extension to PENELOPE's mechanics, there appears to be no advantage to using

the extension over a double sampling of PENELOPE's simpler scheme, either from the standpoint of

computational e�ciency or compliance with higher order moments.

2.6 EGS5 mechanics

Given that the simpler PENELOPE mechanics, when sampled twice appears to be more useful

either the PRESTA-II/EGSnrc or extended PENELOPE mechanics, we have decided to adopt the

PENELOPE mechanics with a new extension which accounts for energy changes to �rst order in an

elegant way. The algorithm is best expressed in the followed pseudo-code:

1) SAMPLE two uniformly distributed random numbers, r1 and r2.

2) IF r1 < r2 THEN:

1. Transport the electron in the forward direction a distance r1t assuming that the energy is

constant E = E0, the energy at the beginning of the step.

2. Deduct energy according to some energy loss model as if it had gone the complete step.

The electron now has energy E = E0 ��(E0; t). Note that the energy loss model depends

on the energy of the electron at that point.

3. Transport the electron in the forward direction a distance (r2 � r1)t assuming that the

energy is constant at the revised energy.

4. De
ect the particle by sampling from the multiple scattering angular distribution assuming

that it has gone the full step t at the revised energy E = E0 ��(E0; t).

5. Transport the electron in the new direction a distance (1 � r2)t assuming that the energy

is constant at the revised energy.

3) ELSE:

1. Transport the electron in the forward direction a distance r2t assuming that the energy is

constant E = E0, the energy at the beginning of the step.
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2. De
ect the particle by sampling from the multiple scattering angular distribution assuming

that it has gone the full step t at the starting energy E = E0.

3. Transport the electron in the forward direction a distance (r1 � r2)t assuming that the

energy is constant at the starting energy.

4. Deduct energy according to some energy loss model as if it had gone the complete step.

The electron now has energy E = E0 ��(E0; t).

5. Transport the electron in the new direction a distance (1 � r1)t assuming that the energy

is constant at the revised energy.

Note that the energy-loss processes can occur on either side (in a time-wise fashion) of the direction

change and that the energy employed in the selection of the angle is, on average, the mean energy of

the step. This gives the correct �rst-order correction for energy loss in the de
ection process.

2.6.1 Accounting for discrete interactions

Conventionally, as in the EGS4 code, an initial distance to a discrete interaction is determined

and then broken up into multiple scattering sub-steps, using some mechanics scheme. A drawback

to this approach is that the cross sections employed to sample the distance to a discrete interaction

depends on the energy of the particle, which changes during the course of transporting the particle

according to a given mechanics scheme.

In the revised EGS5 model, we permit discrete interactions to occur within the multiple scattering

step. If we consider the transport segments to occur without energy change (energy change is e�ected

at the energy \hinge points" only) and resample the distance to discrete interaction after each change

in energy, we can account for the variation in the cross sections with respect to energy along the

path. Note that when an interaction occurs, energy is deducted, daughter particles are created and

directions may change. These are allowed to occur in accordance with the laws of physics. One simply

has to resample the distance to the next interaction point and transport the remaining distance the

the next real or virtual event.

2.6.2 Transport across interfaces

The most accurate way to cross interfaces is to choose a step-size that guarantees that the

transport step does not cross the interface, reducing the electron step-size to such a degree that

the multiple-interaction condensed history physics \evaporates" and the electron is permitted to cross

the interface in analog mode without approximation[41]. This technique, while perfectly accurate,

is computationally very costly. Therefore, we seek a technique that is approximate, yet su�ciently

accurate for most applications, and faster, with the increase in speed coming about by allowing

electrons to drift across interfaces during the sub-step segments.

Since the step-size is no longer constrained by geometry, we consider several constraints on the

electron step-size. The �rst, measured in terms of the �rst elastic scattering transport moment (which

is proportional to the average amount of de
ection), controls the accuracy of the geometrical develop-

ment of the electron track. The second, measured in terms of the �rst inelastic scattering transport

moment (which is proportional to the average amount of energy loss), controls the accuracy of the

energy-loss modeling along the electron track. Superimposed upon this is the discrete interaction

physics.

Assume that the elastic scattering constraint is expressed as a distance Telastic such that a prescribed

average amount of scattering has occurred and that the inelastic scattering constraint is de�ned by a

distance Tinelastic such that a prescribed average amount of energy loss has occurred. The algorithm

takes the following form:

1. Determine the distance to a cumulative elastic scattering event, telastic = r1Telastic, where r1 is

a uniformly sampled random number between 0 and 1. Note that the algorithm is su�ciently

general to allow for other prescriptions for choosing this distance.
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2. Determine the distance to a cumulative inelastic scattering event, tinelastic = r2Tinelastic, where

r2 is another uniformly sampled random number between 0 and 1.

3. Determine the distance to a discrete scattering event, tdiscrete = ���1 ln(r3), where r3 is another
uniformly sampled random number between 0 and 1 and � is the macroscopic cross section in

units of cm�1.

4. Determine the distance, tgeom, the distance along the particle's current direction to an interface.

5. Determine the minimum of the 4 distances: tgeom, telastic, tinelastic , and tdiscrete. Subtract this

distance from all 4.

6. Transport the electron this distance along its current direction of motion.

7. If tgeom = 0:

(a) Rescale the distances telastic and tinelastic, and resample tdiscrete accounting for the new

interaction physics, if the medium on the other side of the interface is di�erent.

8. Else if telastic = 0:

(a) Sample the interaction using the parameters of the current medium and de
ect the electron.

(b) Calculate the new telastic, telastic = (Telastic�telastic)+r4Telastic, where r4 is another uniformly

sampled random number between 0 and 1.

9. Else if tinelastic = 0:

(a) Sample the interaction using the parameters of the current medium and deduct energy from

the electron.

(b) Calculate the new tinelastic, tinelastic = (Tinelastic � tinelastic) + r4Tinelastic, where r4 is another

uniformly sampled random number between 0 and 1.

10. Else if tdiscrete = 0:

(a) Sample the interaction using the parameters of the current medium. Create daughter

particles, de
ect the parent particle and deduct the energy of the daughter particles from

it, as appropriate.

(b) Calculate the new tdiscrete, tdiscrete = ���1 ln(r4), where r4 is another uniformly sampled

random number between 0 and 1.

11. Go to step 4 unless the electron's energy has fallen below the transport threshold.

Note that this scheme has characterized 4 types of interaction, interface intercept, discrete inter-

action, energy loss due to cumulative events, and direction change due to cumulative events. It places

all these \interactions" on a more-or-less equal footing and deals with each separately. Uniformly

randomizing the position at which energy loss due to cumulative events occurs e�ectively samples the

average energy for the elastic and discrete events, the correct prescription to �rst order. Note also that

we interpret any event that can cause any change in the phase space of the particles in the problem to

have equal status. This would allow us to introduce many forms of variance reduction as a new class

of event, and facilitate the introduction of variance reduction techniques.

If we treat the above algorithm in an in�nite medium, tgeom =1 we note that it collapses to the

algorithm described previously. Similarly, it is easy to avoid any species of interaction by setting its

interaction distance to in�nity. Note that this algorithm can be used to model analog transport, which

is accomplished by setting tinelastic = telastic = 0. Therefore, this algorithm can be applied to photon

transport as well. Indeed, as far as the algorithm is concerned, an electron is transported in a similar

fashion to a photon except that an electron has two extra interaction channels.
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3 Conclusions

Transport mechanics algorithms have been reviewed. Based upon recent developments in EGS4/

PRESTA-II, EGSnrc and extensions to the PENELOPE code, an e�cient algorithm which takes into

account energy losses and provides realistic spatial-angular correlations has been described. Future

work will demonstrate the step-size stability of this algorithm under a variety of conditions.

Acknowledgements

We would like to thank Prof. Ed Larsen of the University of Michigan and Prof. Francesc Salvat of

the University of Barcelona for lively discussions on transport mechanics. This project was supported

by funds from Quantum Research Services, Inc. under an award from the Department of Energy.

The �ndings, opinions and recommendations expressed therein are those of the author and are not

necessarily those of Quantum Research Services, Inc. or the Department of Energy.

References

[1] M. J. Berger, \Monte Carlo calculation of the penetration and di�usion of fast charged particles",

Methods in Comput. Phys. 1(1963)135 - 215.

[2] S. A. Goudsmit and J. L. Saunderson, \Multiple scattering of electrons", Phys. Rev. 57(1940)24

- 29.

[3] S. A. Goudsmit and J. L. Saunderson, \Multiple scattering of electrons. II", Phys. Rev. 58(1940)36

- 42.

[4] H. W. Lewis, \Multiple scattering in an in�nite medium", Phys. Rev. 78(1950)526 - 529.

[5] G. Z. Moli�ere, \Theorie der Streuung schneller geladener Teilchen. I. Einzelstreuung am

abgeschirmten Coulomb-Field", Z. Naturforsch 2a(1947)133 - 145.

[6] G. Z. Moli�ere, \Theorie der Streuung schneller geladener Teilchen. II. Mehrfach- und Vielfach-

streuung", Z. Naturforsch 3a(1948)78 - 97.

[7] S. Leisegang, \Zur Mehrfachstreuung von Elektronen in d�unnen Schichten", Z. f�ur Physik

132(1952)183 - 194.

[8] H. A. Bethe, \Moli�ere's theory of multiple scattering", Phys. Rev. 89(1953)1256 - 1266.

[9] E. Keil, E. Zeitler, and W. Zinn, \Zur Einfach- und Mehrfachstreuung geladener Teilchen", Z.

Naturforsch 15a(1960)1031 - 1038.

[10] A. F. Bielajew, \Plural and multiple small-angle scattering from a screened Rutherford cross

section", Nucl. Inst. and Meth. B86(1994)257 - 269.

[11] I. Kawrakow and A. F. Bielajew, \On the representation of electron multiple elastic-scattering

distributions for Monte Carlo calculations", Nucl. Inst. and Meth. B134(1998)325 - 336.

[12] E. W. Larsen, \A theoretical derivation of the condensed history algorithm", Ann. Nucl. Energy

19(1992)701 - 714.

[13] A. F. Bielajew, D. W. O. Rogers, and A. E. Nahum, \Monte Carlo simulation of ion cham-

ber response to 60Co - Resolution of anomalies associated with interfaces", Phys. Med. Biol.

30(1985)419 - 428.

8



[14] A. F. Bielajew and D. W. O. Rogers, \Electron Step-Size Artefacts and PRESTA", In T.M. Jenk-

ins, W.R. Nelson, A. Rindi, A.E. Nahum, and D.W.O. Rogers, editors, Monte Carlo Transport

of Electrons and Photons, pages 115 - 137. Plenum Press, New York, 1989.

[15] S. M. Seltzer, \An overview of ETRAN Monte Carlo methods", In T.M. Jenkins, W.R. Nelson,

A. Rindi, A.E. Nahum, and D.W.O. Rogers, editors, Monte Carlo Transport of Electrons and

Photons, pages 153 - 182. Plenum Press, New York, 1989.

[16] S. M. Seltzer, \Electron-photon Monte Carlo calculations: the ETRAN code", . Int'l J of Appl.

Radiation and Isotopes 42(1991)917 - 941.

[17] O. Blunck and S. Leisegang, \Zum Energieverlust schneller Elektronen in d�unnen Schichten", Z.

f�ur Physik 128(1950)500 - 505.

[18] L. Landau, \On the energy loss of fast particles by ionization", J. Phys. USSR 8(1944)201.

[19] J. A. Halbleib and T. A. Mehlhorn, \ITS: The integrated TIGER series of coupled electron/photon

Monte Carlo transport codes", Sandia Report SAND84-0573, 1984.

[20] J. Halbleib, \Structure and Operation of the ITS code system", In T.M. Jenkins, W.R. Nelson,

A. Rindi, A.E. Nahum, and D.W.O. Rogers, editors, Monte Carlo Transport of Electrons and

Photons, pages 249 - 262. Plenum Press, New York, 1989.

[21] J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, and M. J. Berger, \ITS

Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport

codes", Sandia report SAND91-1634, 1992.

[22] J. Briesmeister, \MCNP|A general purpose Monte Carlo code for neutron and photon transport,

Version 3A", Los Alamos National Laboratory Report LA-7396-M (Los Alamos, NM), 1986.

[23] J. F. Briesmeister, \MCNP|A general Monte Carlo N-particle transport code", Los Alamos

National Laboratory Report LA-12625-M (Los Alamos, NM), 1993.

[24] J. F. Briesmeister, \MCNP|A general Monte Carlo N-particle transport code", Los Alamos

National Laboratory Report LA-12625-M, Version 4B (Los Alamos, NM), 1997.

[25] W. R. Nelson, H. Hirayama, and D. W. O. Rogers, \The EGS4 Code System", Report SLAC|

265, Stanford Linear Accelerator Center, Stanford, Calif, 1985.

[26] W. R. Nelson and D. W. O. Rogers, \Structure and Operation of the EGS4 code system", In

T.M. Jenkins, W.R. Nelson, A. Rindi, A.E. Nahum, and D.W.O. Rogers, editors, Monte Carlo

Transport of Electrons and Photons, pages 287 - 306. Plenum Press, New York, 1989.

[27] A. F. Bielajew, H. Hirayama, W. R. Nelson, and D. W. O. Rogers, \History, overview and recent

improvements of EGS4", National Research Council of Canada Report PIRS-0436, 1994.

[28] C. N. Yang, \Actual path length of electrons in foils", Phys. Rev 84(1951)599 - 600.

[29] L. Eyges, \Multiple scattering with energy loss", Phys. Rev. 74(1948)1534.

[30] A. F. Bielajew and D. W. O. Rogers, \PRESTA: The Parameter Reduced Electron-Step Transport

Algorithm for electron Monte Carlo transport", Nuclear Instruments and Methods B18(1987)165

- 181.

[31] J. Bar�o, J. Sempau, J. M. Fern�andez-Varea, and F. Salvat, \PENELOPE: An algorithm for Monte

Carlo simulation of the penetration and energy loss of electrons and positrons in matter", Nucl.

Inst. and Meth. B100(1995)31 - 46.

9



[32] F. Salvat, J. M. Fern�andez-Varea, J. Bar�o, and J. Sempau, \PENELOPE, an algorithm and

computer code for the Monte Carlo simulation of electron-photon showers", Informes Tecni-

cos CIEMAT n. 799 (Centro de Investigaciones Energ�eticas, Medioambientales y Tecnol�ogicas,

Madrid), 1996.

[33] J. Sempau, E. Acosta, J. Bar�o, J. M. Fern�andez-Varea, and F. Salvat, \An algorithm for Monte

Carlo simulation of coupled electron-photon showers", Nucl. Inst. and Meth. B132(1997)377 -

390.

[34] I. Kawrakow and A. F. Bielajew, \On the condensed history technique for electron transport",

Nucl. Inst. and Meth. B142(1998)253 - 280.

[35] D. R. Tolar Jr., \Advanced Multiple Scattering Algorithms for Electron Transport", PhD Thesis,

University of Michigan, 1999.

[36] A. F. Bielajew and I. Kawrakow, \The EGS4/PRESTA-II electron transport algorithm: Tests of

electron step-size stability", In \Proceedings of the XII'th Conference on the Use of Computers

in Radiotherapy" (Medical Physics Publishing, Madison, Wisconsin), pages 153 - 154, 1997.

[37] A. F. Bielajew and I. Kawrakow, \From \black art" to \black box": Towards a step-size indepen-

dent electron transport condensed history algorithm using the physics of EGS4/PRESTA-II", In

\Proceedings of the Joint International Conference on Mathematical Methods and Supercomputing

for Nuclear Applications" (American Nuclear Society Press, La Grange Park, Illinois, U.S.A.),

pages 1289 - 1298, 1997.

[38] A. F. Bielajew and I. Kawrakow, \PRESTA-I =) PRESTA-II: The new physics", In \Proceedings

of the First International Workshop on EGS4" (Technical Information and Library, laboratory

for High Energy Physics, Japan), pages 51 - 65, 1997.

[39] I. Kawrakow, \Accurate condensed history Monte Carlo simulation of electron transport, Part I:

EGSnrc, the new EGS4 version", Med. Phys. 27(2000)485 - 498.

[40] A. F. Bielajew and F. Salvat, \Improved electron transport mechanics in the PENELOPE Monte

Carlo model", in press Nucl. Inst. and Meth. B(2000).

[41] A. F. Bielajew, \A hybrid multiple-scattering theory for electron-transport Monte Carlo calcula-

tions", Nucl. Inst. and Meth. B111(1996)195 - 208.

10


