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English Parts

1 Monte Carlo Method

A method used to solve a problem with random numbers is called a “Monte Carlo Method”.

1.1 Random numbers

Random numbers are a key tool for the Monte Carlo method. It is required to produce random
numbers quickly when necessary. There are several ways to produce random numbers:

1. Use a dice, a roulette etc. — very slow.

2. Use a table of random numbers.

• A table of random numbers has been well examined concerning its statistical charac-
teristics.

• It is required to store a whole table in computer data storage.

• It currently is not very fast to produce random numbers.

3. Use physical random numbers like the decay of a radioisotope.

• It is not easy to digitalize, and has a weakness concerning stability and reproducibility.

4. Produce random numbers successively from a seed random number, R0, using a recurrence
formula (a congruence equation in ordinary) in the form of Rn+1 = f(Rn). (pseudo-random
numbers).

• It is possible to produce the same random number sequences if the seed random
number is the same.

• Pseudo random numbers residuals by a divider, m.

• There are m different integers at most and, therefore, pseudo random numbers have
a limited period.

• Good pseudo random numbers have the following features:

(a) fast to create a random number

(b) a long sequence

(c) reproducibility

(d) good statistical characteristics

• It is possible to create pseudo random numbers between 0 and 1 by dividing pseudo
random numbers by m.

5. There is another type of random-number generator called the Marasaglia-Zaman random-
number generator[1]. It has a long periodicity (2144 ∼ 1043), and is portable to all 32-bit
machines.

1.2 Pseudo random numbers

A linear congruence methods proposed by D. H. Lehmer is most widely used to produce pseudo
random numbers:

Rn+1 ≡ mod(aRn + b,m) (n = 0, 1, ....,m),

where a, b and m are positive integers and a divider m is the length of the integer value allowed
in the compiler (m = 231 is used for a 32 bit case).
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Pseudo random numbers frequently used in Monte Carlo calculations and their a, b and m
are given in Table 1.

Table 1. Names of pseudo random numbers and their a, b and m.

Name a b m

RANDU 65539 0 231

SLAC RAN1 69069 0 231

SLAC RAN6 663608491 0 231

Another type of random number generators having a longer periodicity are used recently.

1. Marasaglia-Zaman random number generator[1]

• Long periodicity – 2144 ∼ 1043

• Portable to all 32-bit machines

2. RANLUX random number generator[2]

• Long periodicity – 10171

• Ranlux can produce independent random numbers by selecting a seed between 1 and
231.

1.3 Production of pseudo random numbers using a pocket calculator

1. Produce 10 random numbers for R0 = 3, a = 5 and m = 16.

2. Confirm that the same sequence appears from some point.
A number of random numbers produced until the same sequence appears is called a “se-
quence”.

3. What is a sequence in this case ?

4. Check for a different R0.

n 　Rn　 Rn ∗ 5 Rn+1 = mod(R0 ∗ 5, 16)∗
0 3

1

2

3

4

5

6

7

8

9

10

∗mod(R0 ∗ 5, 16) = R0 ∗ 5− INT (R0∗5
16 ) ∗ 16
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1.4 Calculation of π using random numbers

Select 2 random numbers between 0 and 1 in order starting from an arbitrary place in Table
2, which is created by SLAC RAN6, and count the number of pairs which satisfy the following
condition.

R =
√
ξ2 + η2 ≤ 1.0

Trial number 　　 ξ　　 　　 η　　 　　R　　 　R ≤ 1

1

2

3

4

5

6

7

8

9

10

(A)

A/10= (A/10)*4=

A fraction (A/10) which satisfies the condition corresponds to the area within a circle of
radius 1cm in a square of 1 cm. This is π/4 and, therefore, π = 4×A/10.

(0, 0)

(0,1)
(1,1)

(1,0)
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2 Radiation Transport by the Monte Carlo Method

Radiation trajectories are followed in a Mote Carlo calculation by determining each physical
process with probability variables which describe each process.

2.1 Sampling method

2.1.1 Discrete probability process

Example of a discrete probability process Procedures to sample a type of interaction
when the probabilities of the photoelectric effect, Compton scattering and pair creation at a
photon interaction are 30%(Pphoto), 50%(PCompt) and 20%(Ppair), respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

Photo-
electric

Comton
scattering

Pair
creation

Example : Sample reaction when photoelectricis is 30%,
Compton scattering 50% and pair creation 20%.

• The cumulative distribution function can be derived as follows from interaction probabil-
ities.

• Photoelectric effect 0.3 (Pphoto)

• Compton scattering 0.3+0.5 (Pphoto + PCompt)=0.8

• Paire creation 0.3+0.5+0.1 (Pphoto + PCompt + Ppair)=1.0

• Random number variables is η.

• If η ≤ 0.3, the reaction is a photoelectric.

• If 0.3 < η ≤ 0.8, the reaction is Compton scattering.

• If 0.8 < η, the reaction is pair creation.
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of Compton
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Random
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Cummulative probability function (pdf)

• Pphoto + PCompt + Ppair = 1.0

• If η ≤ Pphoto, the reaction is a photoelectric.

• If Pphoto < η ≤ Pphoto + PCompt, the reaction is Compton scattering.

• If Pphoto + PCompt < η, the reaction is pair creation.

General treatment of a discrete probability process If a probability variable (x) takes
on discrete values (xi) with probabilities (pi) such that

F (xn) =
n∑

i=1

pi = 1,

x = xi if

F (xi) =
i∑

j=1

pj ≤ η < F (xi+1) =
i+1∑
j=1

pj ,

2.1.2 Continuous probability process

A probability distribution function (PDF:f(x)) for each physical process is defined over the
range [a, b], where neither a nor b is necessary finite. A PDF must have the properties such that
it is both integrable and non-negative.

We now construct its cumulative probability function (CDF:F (x)),

F (x) =

∫ x

a
f(xi)dxi,

and assume that it is properly normalized, i.e. F (b) = 1.
By its definition, we can map F (x) onto a range of random variables, η, where 0 ≤ η ≤ 1.
Having mapped the random numbers onto F (x), we may invert the equation to give

x = F−1(η).

The way to determine x by solving the above equation is called a “direct method”.
In general, various techniques are necessary to determine x from the above equation.
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F(x)

x0

1

a b

η

x

Example of a direct method–determination of flight distance A particle interaction
position is determined as follows:

1. If the interaction probability of a particle per unit distance is Σt, the number of decreases
(dn) after dl is given by

dn = −nΣtdl.

Therefore, ∫ n

n0

dn

n
(= ln

n

n0
) =

∫ l

0
(−Σt)dl(= −Σtl),

n

n0
= e−Σtl,

where n0 is the number of particles at l = 0.

n0  n

l dl

2. e−Σtl is the probability that a particle does not interact within distance l. Therefore, the
probability that a first interaction occurs between l and l + dl is

p(l)dl = e−ΣtlΣtdl

and

η = P (l) =

∫ l

0
p(l1)dl1 = 1− e−Σtl,

where η is a random number between 0 and 1.1

1
∫∞
0

p(l)dl = 1
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3. By solving this equation, the flight distance (l) can be determined as

l = − 1

Σt
ln(1− η) = −λ ln(1− η).

λ = 1/Σt is called as the “mean free path”.

4. Considering that 1− η is equivalent to η, l is usually determined by

l = −λ ln η.
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2.2 Simulation of radiation transport inside media

Source radiation simultaneously moves inside media while changing its position, direction and
energy by scattering until it is absorbed. It is possible to obtain information like the number of
particles or the absorbed energy at a specified region by the Monte Carlo method.

A basic flowchart of the Monte Carlo method is as follows:

Source (determine position, direction, energy, time and weight)

Determine flight distance (mfp)

Determine new position (collision point)

Store results

Inside system ?

Determine type of interaction

Absorption Scattering etc.

Region of interest ?

Determine direction, energy and 
weight of scattered and produced 
particles after interaction

yes

no

no

yes

1. Determine the source parameters.

• position coordinates

• direction coordinates

• energy

• weight

2. Determine the distance to a interaction point, the flight distance (l), using the total cross
section.

3. Check whether an interaction point is within the same region or not.

• Uncharged particle, like photons or neutrons, move to an interaction point without
changing its direction or energy. In this case, this is a comparison between the flight
distance (l) and the distance to the region boundary (d).

(a) If l < d, move the particle to the interaction point.

(b) If l ≥ d, move the particle to the boundary.

– If the medium of the new region is the same, set the flight distance to l − d
and repeat the same procedure. Otherwise, determine the flight path for the
new medium.

– If the new region is outside the system of interest, stop following this particle
and produce a new particle.
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• A charged particle, like an electron, changes its direction and energy while moving to
the interaction point and, therefore, treatments become more complicate.

4. Determine the type of interaction.

• The type of interaction is determined using discrete-type probability distribution
functions.

• Photoelectric or Compton scattering or pair production is selected in the case of
photons.

5. Determine the energy and a direction of scattered and produced particles at the interaction
point using the differential cross section of the interaction.

6. Store any information of interest when a particle reaches to region of interest, such as:

• type of particle and its energy,

• energy imparted to the medium.

7. Terminate following radiation when

• radiation leaks from the system or

• the radiation energy becomes below its cut-off energy.

8. A history is defined as the whole processes from the production of a source particle until
its termination for some reason. Information of interests can be obtained by repeating a
history many times.

3 A Simple Example of Radiation Transport

3.1 Single layer

Consider uniform medium, A, of 50 cm thickness (see Fig. 1).

1. Suppose that

• 0.5MeV photons enter on this system from the left end,

• the mean free path is 20 cm,

• the ratio of the photoelectric effect and Compton scattering is 1:1, and

• a scattered photon does not change its energy or direction.

2. Example 1

• Suppose that a first random number is .234.

• l = −20× ln 0.234 = 29.0 (1mfp=20 cm)

• 29.0(cm) < 50.0(cm)

• Next random number is 0.208 and less than 0.5. −− > Photo-electric effect

3. Example 2

• Next random number is 906.

• l = −20× ln 0.906 = 1.97 (1mfp=20cm)

• 1.97(cm) < 50.0(cm)

• Next random number is 0.716 and larger than 0.5.−− > Compton scatterimg
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• Next random number is 0.996.

• l = −20× ln 0.996 = 0.0802 (1mfp=20cm)

• 0.0802(cm) < 50.0− 1.97 = 48.03(cm)

• Next random number is 0.600 and larger than 0.5.−− > Compton scatterimg

• Next random number is 0.183.

• l = −20× ln 0.183 = 34.0 (1mfp=20cm)

• 34.0(cm) < 48.03− 0.0802 = 47.95(cm)

• Next random number is 0.868 and larger than 0.5.−− > Compton scatterimg

• Next random number is 0.351.

• l = −20× ln 0.351 = 20.9 (1mfp=20cm)

• 20.9(cm) > 47.95− 34.0 = 13.95(cm)

• Terminate due to escape from the system.

4. Starting from an arbitrary random number in Table 2, follow 10 photons like an example
in Table 3, and count the number of photons transmitted in a plane.

5. Make trajectories of particles like an example in Fig. 1.

3.2 Double layer

Consider 30 cm of medium A followed by 20 cm of medium B (see Fig. 2).

1. Suppose that:

• 0.5MeV photons enter this system from the left end,

• the mean free path and the ratio of the photoelectric effect and Compton scattering
in medium A are same as in the previous case,

• the mean free path of medium B is 3cm,

• the ratio of the photoelectric effect and Compton scattering of medium B is 3:1, and

• a scattered photon does not change its energy or direction for both media.

2. Example 1

• First random number is 0.329.

• l = −20× ln 0.329 = 22.2 (1mfp=20cm)

• 22.2(cm) < 30.0(cm)

• Next random number is 0.612 and larger than 0.5.−− > Compton scatterimg

• Next random number is 0.234.

• l = −20× ln 0.234 = 29.0 (1mfp=20cm)

• 29.0(cm) > 30.0− 22.2 = 7.8(cm)

• Move to boundary (30.0cm).

• Next random number is 0.281.

• l = −3× ln 0.281 = 3.81 (1mfp=3cm)

• 3.81(cm) < 20.0(cm)

• Next random number is 0.906 and larger than 0.75.−− > Compton scatterimg

• Next random number is 0.716.
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• l = −3× ln 0.716 = 1.00 (1mfp)=3cm)

• 1.00(cm) < 20.0− 3.81 = 16.19(cm)

• Next random number is 0.996 and larger than 0.75.−− > Compton scatterimg

• Next random number is 0.600.

• l = −3× ln 0.600 = 1.53 (1mfp=3cm)

• 1.53(cm) < 16.19− 1.00 = 15.19(cm)

• Next random number is 0.183 and less than 0.75.−− > Photoelectric Effecct.

• Teminate history.

3. Starting from an arbitrary random number in Table 2, follow 10 photons, like the example
in Table 4, and count the number of photons transmitted in medium B.

4. Make trajectories of particles, like the example given in Fig. 2.
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4 Complex, but More Realistic, Example of Radiation Trans-
port

Consider the 10 cm aluminum plane shown in Fig. 3.
Suppose that

1. 0.5MeV photons enter this system from the left end,

2. Photons are scattered with equal probability for each 90◦ at Compton scattering for all
photon energies,

Scattering Probability
Angle

0◦ 100/3 %
90◦ 100/3 %

180◦ 100/3 %

3. The photon energy after scattering is calculated by

E =
E0

1 +
(

E0
0.511

)
(1− cos θ)

,

where E0(MeV) is the photon energy before scattering, E(MeV) is that after scattering
and θ is the scattering angle.

4. Suppose that the azimuthal angle after Compton scattering is 0◦ or 180◦ with an equal
probability. 0◦ is 90◦ left from the particle direction and 180◦ is 90◦ right.

5. Use the mean free path (mfp) and branching ratio for each photon energy in Figs. 4 and
5.

6. Set the cutoff energy of photons to 0.05MeV.

4.1 Example

The example in Table 5 can be explained as follows:

• Source photon

1. The mfp of 0.5MeV is 4.15cm from Fig. 4.

2. If we start a random number from 0.351 in Table 3, the flight distance of this photon
is

l = − ln(0.351) ∗ 4.15 = 4.33(cm).

3. This distance is smaller than that to the boundary (10cm). The reaction point is
therefore inside the Al plane.

4. The probability of a photoelectric reaction for 0.5MeV is 0.0018 from Fig. 5.

5. The next random number is 0.259, which is larger than 0.0018. Therefore, the reaction
is Compton scattering.

6. Next, determine the scattering angle. The scattering angle is 0◦ if a random number
is smaller than 1/3, 90◦ if it is between 1/3 and 2/3 and 180◦ if it is larger than 2/3.
The next random number is 0.572. Therefore, the scattering angle is 90◦.
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7. Calculate photon energy after scattering.

E =
0.5

1 +
(

0.5
0.511

)
(1− cos 90◦)

= 0.252(MeV )

8. The azimuthal angle is 0◦ if the random number is less than 0.5, and is 180◦ otherwise.
The next random number is 0.888, and therefore the azimuthal angle is 180◦.

• Scattered photon after the first interaction

1. The mfp of 0.25MeV is 3.34cm from Fig. 4.

2. The next random number is 0.238 and the flight distance is

l = − ln(0.238) ∗ 3.34 = 4.79(cm).

3. The plane is infinite for the X-direction. Therefore, an interaction occurs within the
Al plane.

4. The probability of a photoelectric reaction for 0.25MeV is 0.01 from Fig. 5.

5. The next random number is 0.669, which is larger than 0.01. Therefore, the reaction
is Compton scattering.

6. The next random number is 0.0478 and the scattering angle is 0◦. For θ = 0◦, a
photon does not change energy and it is not necessary to determine the azimuthal
angle.

7. The photon moves from the position of X=-4.79 cm and Z=4.34 cm to the direction
of -X.

• Scattered photon after a second interaction

1. The mfp of 0.25MeV is 3.34cm, the same as in the previous case.

2. The next random number is 0.949 and the flight distance is

l = − ln(0.949) ∗ 3.34 = 0.175(cm).

3. The plane is infinite for the X-direction. Therefore, an interaction occurs within the
Al plane.

4. The probability of a photoelectric reaction for 0.25MeV is 0.01, the same as in the
previous case.

5. The next random number is 0.324, which is larger than 0.01. Therefore, the reaction
is Compton scattering.

6. The next random number is 0.579 and the scattering angle is 90◦.

7. Calculate the photon energy after scattering,.

E =
0.25

1 +
(

0.25
0.511

)
(1− cos 90◦)

= 0.168(MeV ).

8. The next random number is 0.439, which is smaller than 0.5. Therefore, the azimuthal
angle is 0◦.

9. The photon moves from the positions of X=-4.96 cm and Z=4.34 cm to the direction
of Z.
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4.2 Practices

1. Following the same procedure as shown above until a photoelectric effect occurs, the photon
energy becomes below a cut-off energy or the photo reaches the boundary (Z < 0.0 or Z
> 10 cm).

2. Start from another source photon and follow its movements as in the above example. Make
trajectories of the photon in Fig. 6, like the example in Fig. 3.

3. Change the medium from Al to Fe. Start from a source photon and follow its movements,
as in the above example. Make trajectories of the photon in Fig. 6 like the example in
Fig. 3.
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5 Electron Trajectories without Hard Collision

As mentioned before, an electron moves inside materials changing its direction via many elastic
collisions with nucleus. It is almost impossible to treat each elastic collision seplately. Therefore,
an electron trajectory is divided into many small steps and a curved moving a distance, direction
and displacement after step are calculated based on the multiple scattering model. An electron
also loses its kinetic energy via many inelastic collisions with atomic electrons and as the results
ionizes or excites atoms.

Consider the 1 mm aluminum plane shown in Fig. 7.
Suppose that

1. A 1.0 MeV electron enters this system from the left end,

2. Neglect a correction of moving distance due to multiple scattering.

3. Hard collisions such as δ-ray or bremsstrahlung productions do not occur.

4. Set a step size of electron to 0.01 cm for all energy of electrons.

5. The electron changes its direction via multiple scattering with equal probability for each
90◦ for all electron energies.

Scattering Probability
Angle

0◦ 100/3 %
90◦ 100/3 %

180◦ 100/3 %

6. Suppose that the azimuthal angle after multiple scattering is 0◦ or 180◦ with an equal
probability. 0◦ is 90◦ left from the particle direction and 180◦ is 90◦ right.

7. Use same energy loss of 0.04 MeV per 0.01 cm for all electron energies. (Stopping power
of aluminum for 1 MeV electrons is 1.465(MeV cm2/g). The energy loss at 0.01 cm is
0.01 × 1.465 × 2.7 = 0.0396 MeV. Therefore, this assumption means that we use the
electron stopping power at 1 MeV for all electron energies.)

8. Set the cutoff energy of electron to 0.01MeV.

5.1 Example

The example in Table 6 can be explained as follows:

1. 1 MeV electron move to Z=0.01 cm on the Z-axis.

2. This position (Z=0.01, X=0.0cm) is inside aluminum plane due to 0.0 ≥ Z ≤ 0.1.

3. Calculate electron energy (E1=0.96 MeV) after traveling 0.01cm by 1.0−0.04 = 0.96MeV .

4. Next, determine the scattering angle. The scattering angle is 0◦ if a random number is
smaller than 1/3, 90◦ if it is between 1/3 and 2/3 and 180◦ if it is larger than 2/3. The
first random number is 0.126. Therefore, the scattering angle is 0◦.

5. The azimuthal angle is 0◦ if the random number is less than 0.5, and is 180◦ otherwise.
The next random number is 0.938, and therefore the azimuthal angle is 180◦.

6. The electron moves 0.01cm from the position of X=0.0 cm and Z=0.01 cm to the direction
of Z.
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7. This position (Z=0.02, X=0.0cm) is inside aluminum plane due to 0.0 ≥ Z ≤ 0.1.

8. Calculate electron energy (E2=0.92 MeV) after traveling 0.01cm by 0.96−0.04 = 0.92MeV .

9. The next random number is 0.643. Therefore, the scattering angle is 90◦.

10. The next random number is 0.081, and therefore the azimuthal angle is 0◦.

11. The electron moves 0.01cm from the position of X=0.0 cm and Z=0.02 cm to the direction
of X.

12. This position (Z=0.02, X=0.01cm) is inside aluminum plane due to 0.0 ≥ Z ≤ 0.1.

13. Calculate electron energy (E3=0.88 MeV) after traveling 0.01cm by 0.92−0.04 = 0.88MeV .

14. The next random number is 0.556. Therefore, the scattering angle is 90◦.

15. The next random number is 0.817, and therefore the azimuthal angle is 180◦.

16. Follows electron trajectories by the same way. At n=25, electron energy becomes a below
cut-off energy. Electron stop at this position.

5.2 Practice 1

1. Start from another source electron and follow its movements as in the above example until
the electron energy becomes below a cut-off energy or the electron reaches the boundary
(Z < 0.0 or Z > 10 cm).

2. Write trajectory information on Table 7 and make trajectories of the electron using Table
7 in Fig. 8, like the example in Fig. 7.

5.3 Practice 2

1. Start from another source electron and follow its movements as in the above example until
the electron energy becomes below a cut-off energy or the electron reaches the boundary
(Z < 0.0 or Z > 10 cm).

2. Use energy dependent electron stopping power to calculate energy deposition due to move-
ment inside the aluminum.

• Mass collision stopping power for aluminum are shown in Fig.9[3] as a function of
electron energy. The value of mass collision stopping power (MeV cm2/g) can be
approximated by a following equation in the energy range from 0.01 to 1 MeV.

1

ρ

dE

dx
= exp

{
0.292 + 0.0293 ∗ ln(E) + 0.194 ∗ (ln(E))2 + 0.0161 ∗ (ln(E))3

}
• Collision stopping power can be calculated by multiplied the density of aluminum

(ρ=2.7g/cm3) to mass collision stopping power.

3. Write trajectory information on Table 8 and make trajectories of the electron using Table
8 in Fig. 10, like the example in Fig. 7.
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Table 2.a Pseudo random number between 0–1 (RAN6).

222 0.896 222 0.898 222 0.392 222 0.405 222 0.784
222 0.117 222 0.710 222 0.732 222 0.565 222 0.892
222 0.105 222 0.458 222 0.670 222 0.254 222 0.284
222 0.991 222 0.909 222 0.320 222 0.126 222 0.983
222 0.642 222 0.081 222 0.556 222 0.817 222 0.501
222 0.920 222 0.896 222 0.618 222 0.759 222 0.690
222 0.251 222 0.094 222 0.371 222 0.148 222 0.492
222 0.519 222 0.789 222 0.567 222 0.397 222 0.179
222 0.576 222 0.341 222 0.517 222 0.583 222 0.909
222 0.380 222 0.326 222 0.756 222 0.021 222 0.132
222 0.224 222 0.929 222 0.646 222 0.019 222 0.937
222 0.935 222 0.530 222 0.117 222 0.906 222 0.622
222 0.074 222 0.886 222 0.199 222 0.603 222 0.164
222 0.763 222 0.526 222 0.649 222 0.260 222 0.431
222 0.914 222 0.031 222 0.795 222 0.577 222 0.600
222 0.148 222 0.959 222 0.946 222 0.719 222 0.719
222 0.922 222 0.518 222 0.329 222 0.883 222 0.558
222 0.599 222 0.351 222 0.499 222 0.744 222 0.661
222 0.983 222 0.970 222 0.275 222 0.725 222 0.147
222 0.892 222 0.482 222 0.113 222 0.534 222 0.855
222 0.598 222 0.368 222 0.807 222 0.701 222 0.944
222 0.173 222 0.536 222 0.541 222 0.987 222 0.064
222 0.402 222 0.869 222 0.350 222 0.752 222 0.264
222 0.061 222 0.814 222 0.885 222 0.627 222 0.580
222 0.400 222 0.031 222 0.088 222 0.208 222 0.563
222 0.727 222 0.314 222 0.606 222 0.595 222 0.379
222 0.116 222 0.512 222 0.271 222 0.848 222 0.188
222 0.913 222 0.810 222 0.515 222 0.067 222 0.464
222 0.225 222 0.657 222 0.874 222 0.511 222 0.107
222 0.924 222 0.410 222 0.993 222 0.910 222 0.755
222 0.155 222 0.557 222 0.813 222 0.520 222 0.746
222 0.195 222 0.199 222 0.221 222 0.482 222 0.705
222 0.837 222 0.557 222 0.438 222 0.306 222 0.804
222 0.155 222 0.728 222 0.705 222 0.240 222 0.801
222 0.497 222 0.932 222 0.966 222 0.463 222 0.199
222 0.260 222 0.056 222 0.935 222 0.714 222 0.522
222 0.404 222 0.899 222 0.890 222 0.126 222 0.363
222 0.230 222 0.041 222 0.100 222 0.509 222 0.352
222 0.995 222 0.461 222 0.601 222 0.454 222 0.226
222 0.234 222 0.790 222 0.387 222 0.661 222 0.427
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Table 2.b Pseudo random number between 0–1 (RAN6).

222 0.145 222 0.040 222 0.695 222 0.270 222 0.566
222 0.032 222 0.001 222 0.045 222 0.125 222 0.498
222 0.685 222 0.803 222 0.919 222 0.819 222 0.347
222 0.293 222 0.492 222 0.079 222 0.624 222 0.406
222 0.879 222 0.074 222 0.759 222 0.458 222 0.346
222 0.689 222 0.771 222 0.609 222 0.879 222 0.450
222 0.787 222 0.742 222 0.499 222 0.056 222 0.091
222 0.118 222 0.444 222 0.724 222 0.470 222 0.105
222 0.301 222 0.139 222 0.392 222 0.302 222 0.138
222 0.831 222 0.605 222 0.375 222 0.705 222 0.795
222 0.706 222 0.910 222 0.760 222 0.155 222 0.245
222 0.595 222 0.591 222 0.695 222 0.925 222 0.052
222 0.789 222 0.067 222 0.463 222 0.625 222 0.337
222 0.483 222 0.678 222 0.429 222 0.080 222 0.714
222 0.356 222 0.995 222 0.636 222 0.195 222 0.470
222 0.800 222 0.808 222 0.062 222 0.305 222 0.005
222 0.567 222 0.920 222 0.061 222 0.718 222 0.663
222 0.176 222 0.484 222 0.079 222 0.920 222 0.716
222 0.101 222 0.502 222 0.297 222 0.771 222 0.613
222 0.363 222 0.757 222 0.770 222 0.010 222 0.465
222 0.018 222 0.990 222 0.971 222 0.579 222 0.244
222 0.819 222 0.114 222 0.388 222 0.738 222 0.451
222 0.651 222 0.127 222 0.710 222 0.809 222 0.025
222 0.251 222 0.163 222 0.531 222 0.069 222 0.433
222 0.976 222 0.808 222 0.277 222 0.206 222 0.242
222 0.908 222 0.721 222 0.557 222 0.920 222 0.177
222 0.205 222 0.803 222 0.865 222 0.350 222 0.191
222 0.037 222 0.300 222 0.974 222 0.082 222 0.472
222 0.800 222 0.751 222 0.409 222 0.996 222 0.824
222 0.627 222 0.497 222 0.242 222 0.897 222 0.424
222 0.159 222 0.492 222 0.468 222 0.843 222 0.992
222 0.724 222 0.529 222 0.637 222 0.835 222 0.119
222 0.049 222 0.775 222 0.944 222 0.334 222 0.287
222 0.406 222 0.454 222 0.859 222 0.045 222 0.434
222 0.695 222 0.769 222 0.927 222 0.527 222 0.907
222 0.182 222 0.664 222 0.353 222 0.938 222 0.737
222 0.565 222 0.874 222 0.471 222 0.403 222 0.165
222 0.502 222 0.349 222 0.932 222 0.122 222 0.930
222 0.565 222 0.275 222 0.429 222 0.452 222 0.469
222 0.258 222 0.017 222 0.582 222 0.761 222 0.847
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Table 2.c Pseudo random number between 0–1 (RAN6).

222 0.779 222 0.789 222 0.837 222 0.308 222 0.117
222 0.157 222 0.037 222 0.566 222 0.047 222 0.779
222 0.373 222 0.094 222 0.930 222 0.711 222 0.288
222 0.624 222 0.901 222 0.279 222 0.012 222 0.014
222 0.048 222 0.570 222 0.083 222 0.561 222 0.410
222 0.904 222 0.585 222 0.089 222 0.847 222 0.116
222 0.674 222 0.119 222 0.865 222 0.440 222 0.953
222 0.433 222 0.428 222 0.830 222 0.252 222 0.342
222 0.852 222 0.509 222 0.388 222 0.982 222 0.815
222 0.579 222 0.454 222 0.928 222 0.570 222 0.482
222 0.208 222 0.469 222 0.399 222 0.152 222 0.124
222 0.828 222 0.400 222 0.642 222 0.661 222 0.654
222 0.634 222 0.056 222 0.320 222 0.102 222 0.730
222 0.600 222 0.052 222 0.797 222 0.982 222 0.549
222 0.568 222 0.017 222 0.021 222 0.960 222 0.131
222 0.385 222 0.109 222 0.932 222 0.376 222 0.400
222 0.129 222 0.230 222 0.727 222 0.109 222 0.328
222 0.086 222 0.986 222 0.239 222 0.874 222 0.988
222 0.625 222 0.093 222 0.297 222 0.265 222 0.385
222 0.536 222 0.863 222 0.295 222 0.704 222 0.368
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Table 3 Single layer.

No. 　 d(cm)　 Random No. l (cm) d > l d ≤ l Random No. P.E. Comp.

Exp. 1 50.0 0.234 29.0 * 0.208 *

Exp. 2 50.0 0.906 1.97 * 0.716 *

48.03 0.996 0.0802 * 0.600 *

47.95 0.183 34.0 * 0.868 *

13.95 0.351 20.9 *
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Figure 4: Mfp of Al and Fe as a function of the photon energy.
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Figure 5: Photoelectric branching ratio of Al and Fe as a function of the photon energy.
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Table 6 Electron trajectories

Step n Zn Xn 0.0 < Zn < 0.1 En En > 0.01 random θ random φ
number number

1 0.01 0.0 ○ 0.96 ○ 0.126 0◦ 0.983 180◦

2 0.02 0.0 ○ 0.92 ○ 0.642 90◦ 0.081 0◦

3 0.02 0.01 ○ 0.88 ○ 0.556 90◦ 0.817 180◦

4 0.03 0.01 ○ 0.84 ○ 0.501 90◦ 0.920 180◦

5 0.03 0.0 ○ 0.80 ○ 0.896 180◦ 0.618 180◦

6 0.03 0.01 ○ 0.76 ○ 0.759 180◦ 0.690 180◦

7 0.03 0.0 ○ 0.72 ○ 0.251 0◦ 0.094 0◦

8 0.03 -0.01 ○ 0.68 ○ 0.371 90◦ 0.519 180◦

9 0.02 -0.01 ○ 0.64 ○ 0.789 180◦ 0.567 180◦

10 0.03 -0.01 ○ 0.60 ○ 0.397 90◦ 0.179 0◦

11 0.03 0.0 ○ 0.56 ○ 0.576 90◦ 0.341 0◦

12 0.02 0.0 ○ 0.52 ○ 0.517 90◦ 0.583 180◦

13 0.02 0.01 ○ 0.48 ○ 0.909 180◦ 0.380 0◦

14 0.02 0.0 ○ 0.44 ○ 0.326 0◦ 0.756 180◦

15 0.02 -0.01 ○ 0.40 ○ 0.021 0◦ 0.132 0◦

16 0.02 -0.02 ○ 0.36 ○ 0.132 0◦ 0.224 0◦

17 0.02 -0.03 ○ 0.32 ○ 0.929 180◦ 0.646 180◦

18 0.02 -0.02 ○ 0.28 ○ 0.019 0◦ 0.937 180◦

19 0.02 -0.01 ○ 0.24 ○ 0.935 180◦ 0.530 180◦

20 0.02 -0.02 ○ 0.20 ○ 0.117 0◦ 0.906 180◦

21 0.02 -0.03 ○ 0.16 ○ 0.622 90◦ 0.074 0◦

22 0.03 -0.03 ○ 0.12 ○ 0.886 180◦ 0.199 0◦

23 0.02 -0.03 ○ 0.08 ○ 0.603 90◦ 0.164 0◦

24 0.02 -0.04 ○ 0.04 ○ 0.763 180◦ 0.526 180◦

25 0.02 -0.03 ○ 0.00 X
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Table 7 Electron trajectories

Step n Zn Xn 0.0 < Zn < 0.1 En En > 0.01 random θ random φ
number number

1 　 　 　　　 　 　　　 　　　 　　 　　

2 　 　　　

3 　

4 　

5 　

6 　

7 　

8 　

9 　

10 　 　 　

11 　

12 　

13 　

14 　

15 　

16 　

17 　

18 　

19 　 　 　

20 　

21 　

22 　

23 　　

24

25

26

27

28

29

30

30



Table 8 Electron trajectories

Step n Zn Xn 0.0 < Zn < 0.1 En En > 0.01 random θ random φ
number number

1 　 　 　　　 　 　　　 　　　 　　 　　

2 　 　　　

3 　

4 　

5 　

6 　

7 　

8 　

9 　

10 　 　 　

11 　

12 　

13 　

14 　

15 　

16 　

17 　

18 　

19 　 　 　

20 　

21 　

22 　

23 　　

24
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30
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Figure 9: Collision stopping power of Al
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