
Appendix B

EGS5 USER MANUAL

Hideo Hirayama and Yoshihito Namito
Radiation Science Center

Advanced Research Laboratory
High Energy Accelerator Research Organization (KEK)

1-1 Oho Tsukuba-shi Ibaraki-ken 305-0801 JAPAN

Alex F. Bielajew and Scott J. Wilderman
Department of Nuclear Engineering and Radiological Sciences

The University of Michigan
2355 Bonisteel Boulevard

Ann Arbor, MI 48109, USA

Walter R. Nelson
Department Associate in the Radiation Physics Group (retired)

Radiation Protection Department
Stanford Linear Accelerator Center

2575 Sand Hill Road Menlo Park, CA 94025, USA

This EGS5 User Manual is Appendix B of a document called
SLAC-R-730/KEK-2005-8, which can be obtained from the SLAC and KEK web sites.

1

B.1 Introduction

Version 5 of the EGS code system is written exclusively in FORTRAN, marking a departure from
the use of the MORTRAN programming language, first introduced with Version 2. To retain
some of the functionality and flexibility that MORTRAN provided, EGS5 employs some common
extensions of FORTRAN-77, most notably “include” statements, which are used to import identical
versions of all the EGS5 COMMON blocks into all appropriate subroutines. Users can thus alter the
values of parameters set in the COMMON block files which are “included,” in the various source codes,
thus emulating the use of MORTRAN macros in specifying array dimensions. Each of the COMMON

block files contains the declarations for just one COMMON block, with all files containing EGS-related
COMMON blocks located in a directory named include and all PEGS-related files in a directory called
pegscommons.

Additionally, many of the features and options in EGS4 which were invoked through MORTRAN
macro substitutions have been retained in the base shower code in EGS5 and can be“turned on”
by user specification of the appropriate flags and parameters.

B.2 General Description of Implementation

As described in Chapter 2 of SLAC-R-730/KEK-2005-8 (“The EGS5 Code System”), to use EGS
the user must write a “user code” consisting of a MAIN program and subroutines HOWFAR and
AUSGAB. The user defines and controls an EGS5 shower simulation by initializing, tallying, and in
some cases altering variables found in COMMON blocks shared by user code MAIN and a set of four
EGS5 subroutines which MAIN must call (BLOCK SET, PEGS5, HATCH, and SHOWER). The user can
access and manipulate variables located in many additional COMMON blocks which are shared by
EGS5 subroutines which call the user subroutines HOWFAR and AUSGAB at points in the simulation
specified by the user.

The user’s MAIN program first calls the EGS5 BLOCK SET subroutine to set default values for
variables in EGS5 COMMON blocks which are too large to be defined in BLOCK DATA. MAIN also
initializes variables needed by HOWFAR, and defines the values of EGS5 COMMON block variables
corresponding to such things as names of the media to be used, the desired cutoff energies, and the
distance unit to be used (e.g., inches, centimeters, radiation lengths, etc.). MAIN next calls EGS5
subroutine PEGS5 (to create basic material data) and then calls EGS5 subroutine HATCH, which
“hatches” EGS by reading the material data created by PEGS for the media in the given problem.
Once the initialization is complete, MAIN then calls the EGS5 subroutine SHOWER, with each call to
SHOWER resulting in the simulation of one history (often referred to as a “case”). The arguments to
SHOWER specify the parameters of the incident particle initiating the cascade. The user subroutine
HOWFAR is required for modeling the problem geometry (which it does primarily by keeping track
of and reporting to EGS) the regions in which the particles lie), while user subroutine AUSGAB is
typically used to score the results of the simulation.

2

Table B.1: Variable descriptions for COMMON block BOUNDS, include file egs5 bounds.f of the EGS5
distribution.

ECUT Array of region-dependent charged particle cutoff energies in MeV.

PCUT Array of region-dependent photon cutoff energies in MeV.

VACDST Distance to transport in vacuum (default=1.E8).

In addition to MAIN, HOWFAR, and AUSGAB, additional subprograms may be included in the user
code to facilitate the geometry computations of HOWFAR, among other things. (Sample “auxiliary”
subroutines useful in performing distance-to-boundary computations and in moving particles across
regions in a variety of common geometries are provided with the EGS5 distribution.)

The interaction between the user code and the EGS5 modules is best illustrated in Figure B.1.

In summary, the user controls an EGS5 simulation by means of:

Calls to subroutines:

PEGS5 to create media data
HATCH to establish media data
SHOWER to initiate the cascade

Calls from EGS to user subroutines:

HOWFAR to specify the geometry
AUSGAB to score and output the results

Altering elements of COMMON blocks:

parameters inside EGS5 source code, to set array dimensions
variables inside user code, to specify problem data

The following sections discuss the above mechanisms in greater detail.

B.3 Variables in EGS5 COMMON Blocks

Listed in Tables B.1 through B.17 are the variables in EGS5 COMMON blocks which may be relevant
to the user, along with a brief description of their functions. Methods for manipulating these
variables to either control EGS5 shower simulations or to retrieve results will be discussed in
subsequent sections. Note that an asterisk (*) after a variable name in any of the tables indicates
a change from the original EGS4 default.

3

+---------+ +-------------+

| User | | Information |

| Control | | Extracted |

| Data | | From Shower |

+---------+ +-------------+ U

| /|\ S

| | E

\|/ | R

+----------------+ +--------+ +--------+

| MAIN | | HOWFAR | | AUSGAB |<----- + C

+----------------+ +--------+ +--------+ | O

| | /|\ /|\ /|\ /|\ | D

| | | | | | | E

| | | +-----------+ | |

==== | ======== | ============ | ========== | | | ======= |==

| | | | | | |

| | | +--------+ | | |

\|/ \|/ | | | | |

+----------+ +--------+ +--------+ +--------+ |

|BLOCK DATA| | SHOWER |--->| ELECTR | +->| PHOTON |--> + |

|BLOCK_SET | +--------+ +--------+ | +--------+ | |

|(Defaults)| | | | | | E

+----------+ +-------> | --------> + | | G

| +--+ | | S

| | +-------+ +-------+ | |

\|/ +-->| MSCAT | +--| COMPT |<-+ | C

+----------+ | +-------+ | +-------+ | | O

| PEGS5 | | +--| PAIR |<-+ | D

| (Create | | +-------+ | +-------+ | | E

| Media | +-->| ANNIH |--+ | | |

| Data) | | +-------+ | | +-------+ | |

+----------+ +-->| BHABHA|--+ | | PHOTO |<-+ |

| | +-------+ | | +-------+ |

| +-->| MOLLER|--+ | | |

\|/ | +-------+ | | | |

+----------+ +-->| BREMS |--+ | +------> +

| HATCH | | +-------+ | | |

| (Access | | \|/\|/ |

| PEGS5 | | +------+ |

| Data) | +----------> | UPHI |-----------> +

+----------+ +------+

Figure B.1: EGS5 user code control and data flow diagram.

4

Table B.2: Variable descriptions for COMMON block BREMPR, include file egs5 brempr.f of the EGS5
distribution.

IBRDST* Flag for turning on (=1) sampling of bremsstrahlung polar angle from (default=0
implies angle given by m/E).

IPRDST* Flag for specifying order of sampling of polar angles of pair electrons (default=0,
implies angles given by m/k).

IBRSPL* Flag for turning on (=1) splitting of bremsstrahlung photons (default=0 implies no
splitting).

NBRSPL* Number of bremsstrahlung photons for splitting when IBRSPL=1

B.4 Sequence of Actions Required of User Code MAIN

The exact sequence of procedures required of user code MAIN for the specification and control of
an EGS5 simulation is listed below. Details for implementing the necessary steps are provided in
subsequent subsections.

Step 1 Pre-PEGS5 initializations
Step 2 PEGS5 call
Step 3 Pre-HATCH initializations
Step 4 Specification of incident particle parameters
Step 5 HATCH call
Step 6 Initializations for HOWFAR
Step 7 Initializations for AUSGAB
Step 8 SHOWER call
Step 9 Output of results

Steps 4, 6, and 7 may actually fall anywhere after step 1 and before step 8, and step 8 must be
executed at least once prior to step 9. Step 2 may be skipped if an existing PEGS5 data file has
been prepared and properly linked.

B.4.1 Pre-PEGS5 Initializations (Step 1)

Prior to calling PEGS5 , users must define certain variables and may, at their discretion, override
some of the EGS5 parameter defaults. As noted earlier, all EGS5 variables are readily accessed
through COMMON blocks which are imported into user code through “include” statements, as in:

include ’include/egs5_h.f’ ! Main EGS "header" file

include ’include/egs5_bounds.f’ ! bounds contains ecut and pcut

include ’include/egs5_edge.f’ ! edge contains iedgfl

5

Table B.3: Variable descriptions for COMMON block COUNTERS, include file counters.f of the EGS5
distribution. All variables in COMMON block COUNTERS are initialized to 0 by a call to subroutine
COUNTERS OUT(0) with argument of 0.

IANNIH* Number of times calling subprogram ANNIH.

IAPHI* Number of times calling subprogram APHI.

IBHABHA* Number of times calling subprogram BHABHA.

IBREMS* Number of times calling subprogram BREMS.

ICOLLIS* Number of times calling subprogram COLLIS.

ICOMPT* Number of times calling subprogram COMPT.

IEDGBIN* Number of times calling subprogram EDGBIN.

IEII* Number of times calling subprogram EII.

IELECTR* Number of times calling subprogram ELECTR.

IHARDX* Number of times calling subprogram HARDX.

IHATCH* Number of times calling subprogram HATCH.

IKAUGER* Number of times calling subprogram KAUGER.

IKSHELL* Number of times calling subprogram KSHELL.

IKXRAY* Number of times calling subprogram KXRAY.

ILAUGER* Number of times calling subprogram LAUGER.

ILSHELL* Number of times calling subprogram LSHELL.

ILXRAY* Number of times calling subprogram LXRAY.

IMOLLER* Number of times calling subprogram MOLLER.

IMSCAT* Number of times calling subprogram MSCAT.

IPAIR* Number of times calling subprogram PAIR.

IPHOTO* Number of times calling subprogram PHOTO.

IPHOTON* Number of times calling subprogram PHOTON.

IRAYLEI* Number of times calling subprogram RAYLEI.

ISHOWER* Number of times calling subprogram SHOWER.

IUPHI* Number of times calling subprogram UPHI.

ITMXS* Number of times requested multiple scattering step was truncated in ELECTR because
pathlength was too long.

NOSCAT Number of times multiple scattering was aborted in MSCAT because the pathlength
was too small (Note change in that NOSCAT has been moved here from EGS4 COMMON

block MISC).

IBLOCK* Number of times calling subprogram BLOCK SET.

Table B.4: Variable descriptions for COMMON block EDGE2, include file egs5 edge.f of the EGS5
distribution.

IEDGFL* Array of flags for turning on (=1) explicit treatment of K and L-edge fluorescent
photons (default=0).

IAUGER* Array of flags for turning on (=1) explicit treatment of K and L Auger electrons
(default=0).

6

Table B.5: Variable descriptions for COMMON block EIICOM, include file egs5 eiicom.f of the EGS5
distribution.

IEISPL* Flag for turning on (=1) splitting of x-rays generated by electron-impact ionization
(default=0 implies no splitting).

NEISPL* Number of electron impact ionization x-rays for splitting when IEISPL=1.

Table B.6: Variable descriptions for COMMON block EPCONT, include file egs5 epcont.f of the EGS5
distribution.

EDEP Energy deposited in MeV.

TSTEP Distance to next event: interaction, energy hinge, or multiple scattering hinge (cm).

USTEP Initially, user step length requested (from HOWFAR), and then actual transport step
taken. Thus, USTEP should be scored when estimating track length.

TMSTEP Total step over both legs of a multiple scattering hinge (replaces the EGS4 variable
TVSTEP). Note that under the random hinge transport mechanics scheme of EGS5,
TMSTEP is not reflective of any transport distance, and that the EGS4 variables
TVSTEP, TUSTEP and VSTEP are redundant and so have been removed from this
common (as has the variable TSCAT). For legacy purposes, the variable TVSTEP is
retained as a local variable declared in egs5 epcont.f and equivalenced to USTEP.

RHOF Value of density scaling correction (default=1).

EOLD Charged particle (total) energy at beginning of step in MeV.

ENEW Charged particle (total) energy at end of step in MeV.

EKE Kinetic energy of charged particle in MeV.

ELKE Natural logarithm of EKE.

BETA2 β2 for present particle. (Note that EGS4 variable BETA is no longer included.)

GLE Natural logarithm of photon energy.

IDISC User discard request flag (to be set in HOWFAR). IDISC > 0 means user requests imme-
diate discard, IDISC < 0 means user requests discard after completion of transport,
and IDISC = 0 (default) means no user discard requested.

IROLD Index of previous region.

IRNEW Index of new region.

IAUSFL Array of flags for turning on various calls to AUSGAB.

7

Table B.7: Variable descriptions for COMMON block MEDIA, include file egs5 media.f of the EGS5
distribution.

RLCM Array containing radiation lengths of the media in cm. (Note the name change
necessitated by combining EGS and PEGS.)

RLDU Array containing radiation lengths of the media in distance units established by
DUNIT.

RHOM Array containing density of the media in g/cm3. (Note the name change necessitated
by combining EGS and PEGS.)

NMED Number of media being used (default=1).

MEDIA Array containing names of media (default is NaI).

IRAYLM Array of flags for turning on (=1) coherent (Rayleigh) scattering in various media.
Set in HATCH based on values of IRAYLR.

INCOHM* Array of flags for turning on (=1) use of incoherent scattering function for Compton
scattering angles in various media. Set in HATCH based on values of INCOHR.

IPROFM* Array of flags for turning on (=1) Doppler broadening of Compton scattering ener-
gies in various media. Set in HATCH based on values of IPROFR.

IMPACM* Array of flags for turning on (=1) electron impact ionization in various media. Set
in HATCH based on values of IMPACR.

CHARD* Array of “characteristic dimensions,” or representative size (in cm) of scoring regions
in various media. Set by user code MAIN prior to PEGS5 call to invoke automated
electron step-size selection.

USEGSD* Array of flags indicating (on =1) whether given media uses Goudsmit-Saunderson
multiple scattering distribution. Set by user code MAIN prior to HATCH call (de-
fault=0). Note that in the current implementation, it is a requirement that if one
elects to use this option in one media, one must use it in all media.

8

Table B.8: Variable descriptions for COMMON block MISC, include file egs5 misc.f of the EGS5
distribution.

NREG* Number of regions for the problem, set by user code MAIN prior to HATCH call.

MED Array containing medium index for each region, set by user code MAIN prior to HATCH

call.

DUNIT The distance unit to be used. DUNIT=1 (default) establishes all distances in cm,
whereas DUNIT=2.54 establishes all distances in inches.

KMPI FORTRAN unit number (default=12) from which to read material data.

KMPO FORTRAN unit number (default=8) on which to “echo” material data (e.g., printed
output, “dummy” output, etc.).

RHOR Array containing the density for each region (g/cm3). If this is different than the
default density of the material in that region, the cross sections and stopping powers
(with the exception of the density effect) are scaled appropriately.

NOMSCT* Array of flags forcing multiple scattering to be bypassed (on =1) in subroutine MSCAT
for various regions (default=0, off).

IRAYLR Array of flags for turning on (=1) coherent (Rayleigh) scattering in various regions
(default=0).

LPOLAR* Array of flags for turning on (=1) linearly polarized photon scattering in various
regions (default=0).

INCOHR* Array of flags for turning on (=1) use of incoherent scattering function for Compton
scattering angles in various regions (default=0).

IPROFR* Array of flags for turning on (=1) Doppler broadening of Compton scattering ener-
gies in various regions (default=0).

IMPACR* Array of flags for turning on (=1) electron impact ionization in various regions
(default=0).

K1HSCL* Array of parameters for scaling region scattering strength at highest problem energy,
set in user code MAIN prior to HATCH call.

K1LSCL* Array of parameters for scaling region scattering strength at lowest problem energy,
set in user code MAIN prior to HATCH call.

Table B.9: Variable descriptions for COMMON block MS, include file egs5 ms.f of the EGS5 distri-
bution.

TMXSET* Flag to force truncation of requested multiple scattering steps which violate Bethe
criteria (default=.true., enforce limit).

9

Table B.10: Variable descriptions for COMMON block RLUXDAT, include file randomm.f of the EGS5
distribution.

LUXLEV* Luxury level of random number generator RANLUX (called RANDOMSET in EGS5) (de-
fault=1).

INSEED* Initial seed used with RANLUX random number generator (default = 314159265).

KOUNT* Number of random numbers delivered plus number skipped at any point in simula-
tion (up to 109).

MKOUNT* Number of sets of 109 random numbers delivered at any point in simulation.

ISDEXT* Array of integer representations of the current RANLUX seeds at any point in simu-
lation.

Table B.11: Variable descriptions for COMMON block STACK, include file egs5 stack.f of the EGS5
distribution. This COMMON contains information about particles currently in the shower. All vari-
ables are arrays except for NP, LATCHI, DEINITIAL, DERESID and DENSTEP.

E Total energy in MeV.

X,Y,Z Position of particle in units established by DUNIT.

U,V,W Direction cosines of particle.

UF,VF,WF* Electric field vectors of polarized photon.

DNEAR A lower bound on the distance from the coordinates (X,Y,Z) to nearest surface
of current region.

WT Statistical weight of current particle (default=1.0). Used in conjunction with
variance reduction techniques as determined by user.

K1STEP* Scattering strength remaining before the next multiple scattering hinge.

K1RSD* Scattering strength remaining after the current multiple scattering hinge to the
end of the full, current multiple scattering step.

K1INIT* Scattering strength from the end of the previous multiple scattering step to the
current multiple scattering hinge.

DENSTEP* Energy loss remaining before the next energy loss hinge.

DERESID* Energy loss remaining after the current energy loss hinge to the end of the full,
current energy loss step.

DEINITIAL* Energy loss from the end of the previous energy loss step to the current energy
loss hinge.

IQ Integer charge of particle, +1,0,-1, for positrons, photons, and electrons, respec-
tively.

IR Index of particle’s current region.

LATCH* Latching variable

LATCHI* Initialization for latch

NP The stack pointer (i.e., the particle currently being pointed to). Also, the number
of particles on the stack.

10

Table B.12: Variable descriptions for COMMON block THRESH, include file egs5 thresh.f of the EGS5
distribution.

RMT2 Twice the electron rest mass energy in MeV.

RMSQ Electron rest mass energy squared in MeV2.

AP Array containing PEGS lower photon cutoff energy for each medium in MeV.

UP Array containing PEGS upper photon cutoff energy for each medium in MeV.

AE Array containing PEGS lower charged particle cutoff energy for each medium in
MeV.

UE Array containing PEGS upper charged particle cutoff energy for each medium in
MeV.

TE Same as AE except kinetic energy rather than total energy.

THMOLL Array containing the Møller threshold energy (THMOLL=AE+TE) for each medium in
MeV.

Table B.13: Variable descriptions for COMMON block UPHIOT, include file egs5 uphiot.f of the
EGS5 distribution.

THETA Collision scattering angle (polar).

SINTHE Sine of THETA.

COSTHE Cosine of THETA.

SINPHI Sine of PHI (the azimuthal scattering angle of the collision).

COSPHI Cosine of PHI.

PI π

TWOPI 2π

PI5D2* 5π/2

Table B.14: Variable descriptions for COMMON block USEFUL, include file egs5 useful.f of the EGS5
distribution.

MEDIUM Index of current medium. If vacuum, then MEDIUM=0.

MEDOLD Index of previous medium.

RM Electron rest mass energy in MeV.

IBLOBE Flag indicating if photon is below binding energy (EBINDA) after a photoelectric
interaction (yes=1).

Table B.15: Variable descriptions for COMMON block USERSC, include file egs5 usersc.f of the EGS5
distribution.

ESTEPR* Array of factors by which to scale the energy hinge steps in various regions (de-
fault=0, implying no scaling).

ESAVE* Array of energies below which to discard electrons which have ranges less than the
perpendicular distances to their current region boundaries (default=0., implying no
range-based discard).

EMAXE* Maximum total energy (in MeV) of any electron in the simulation.

11

Table B.16: Variable descriptions for COMMON block USERVR, include file egs5 uservr.f of the EGS5
distribution.

CEXPTR* Constant used in exponential transform of photon collision distance (default=0, no
transformation).

Table B.17: Variable descriptions for COMMON block USERXT, include file egs5 userxt.f of the EGS5
distribution.

IPHTER* Array of flags for turning on (=1) sampling of angular distributions of photoelectrons
in various regions (default=0, implying emission in direction of incident photon).

include ’include/egs5_epcont.f’ ! epcont contains iausfl

include ’include/egs5_media.f’ ! media contains the array media

include ’include/egs5_misc.f’ ! misc contains med

include ’include/egs5_thresh.f’ ! thresh contains ae and ap

include ’include/egs5_uphiot.f’ ! uphiot contains PI

include ’include/egs5_useful.f’ ! useful contains RM

include ’include/egs5_usersc.f’ ! usersc contains emaxe

include ’include/randomm.f’

Note that most of the variables accessed in a typical user code MAIN program can be found in the
COMMON files referenced by the include statements in the above example. Other variables which
a user code might wish to access and the EGS5 include files which contain them were given in
Tables B.1 through B.17 of the previous section.

Note that all EGS5 variables are explicitly declared (all EGS5 subroutines and functions begin
with the statement IMPLICT NONE), and that all floating-point variables (except some of those used
in the random number generator and in sample user codes which call intrinsic functions to compute
CPU time) are declared as REAL*8.

Optional parameter modifications

The EGS5 file include/egs5 h.f is different from the other files in the include directory in that it
contains not COMMON blocks, but rather declarations and specifications of the FORTRAN parameters
used by the other EGS5 include files to define array dimensions. This is done so that users may
trivially update the dimensions of all arrays throughout the EGS5 code system simply by changing
the values of the appropriate variables in the PARAMETER statements of include/egs5 h.f. The
principal parameters defined in include/egs5 h.f which users may wish to adjust are MXMED (the
maximum number of media for the problem), MXREG (the maximum number of regions), and MXSTACK

(the maximum stack size). Most of the other parameters defined in include/egs5 h.f should be
altered only under exceptional circumstances. Some examples of parameter modifications are given
in the comments in include/egs5 h.f, as seen below:

12

! Maximum number of different media (excluding vacuum)

integer MXMED

parameter (MXMED = 4)

! parameter (MXMED = 10)

! Maximum number of regions allocated

integer MXREG

parameter (MXREG = 2000)

! parameter (MXREG = 2097153)

Required initializations

Two sets of initializations must be performed in the user’s MAIN program. First, MAIN must call the
EGS5 subroutine BLOCK SET to initialize common block variables not defined in BLOCK DATA. This
is done simply by including the statement:

! ==============

call block_set ! Initialize some general variables

! ==============

Also, if the user is interested in tracking the number of calls to the various subroutines of EGS5,
the counters in common block COUNTERS may also be initialized at this point by calling subroutine
COUNTERS OUT with argument 0, as in:

! ====================

call counters_out(0)

! ====================

Second, because of the way PEGS and EGS are linked in EGS5, the specification of the names
of the problem media prior to calling PEGS5 is now a requirement of EGS5 user codes. The COMMON

MEDIA variables NMED (the number of media for the current problem) and MEDIA (a character array
of the names of the media) must be set prior to a call to PEGS5. Note that the media names must
be exactly 24 characters long. An example of a typical method for filling the MEDIA array (using
lead, steel, and air at NTP as the media), is shown below. First, a local array is declared and
initialized in MAIN , and then copied into MEDIA as in:

character*24 medarr(3)

medarr(1)=’PB ’

medarr(2)=’STEEL ’

13

medarr(3)=’AIR AT NTP ’

nmed=3 !Number of media used

do j=1,nmed

do i=1,24

media(i,j)=medarr(j)(i:i)

end do

end do

One final variable, which is optional but recommended, must be set prior to PEGS5 being called
if it is to be used. As described in chapter 2 of SLAC-R-730/KEK-2005-8, EGS5 provides a
method for selecting nearly optimal electron multiple-scattering step-sizes in most applications.
The method requires the input specification of a material-dependent parameter CHARD, dimensioned
CHARD(MXMED) and related to the size (in cm) of the smallest scoring region for a given material.
Values (in cm) of CHARD, which is part of COMMON MEDIA, can be passed to PEGS5 simply by assigning
values, as in:

chard(1) = .60d0 ! optional, but recommended to invoke

chard(2) = .10d0 ! automatic step-size control

chard(3) = .85

If CHARD is not specified or is set to 0 (the default) for a given material, PEGS5 will use a method
for determining scattering strengths (and hence step-sizes) for electron multiple scattering based
on fractional energy losses, also described in chapter 2 of the EGS5 Code System report.

B.4.2 PEGS5 Call (Step 2)

MAIN may now call PEGS5 to create material data files for the problem. Specifications for the PEGS
input is found in the “PEGS User Manual,” Appendix C of SLAC-R-730/KEK-2005-8. Note that
the call to PEGS5 may be skipped if the working user code directory contains an existing PEGS
data file generated with parameters compatible with the current EGS5 simulation specifications.
Checks for compatibility are performed in HATCH.

B.4.3 Pre-HATCH Initializations (Step 3)

Users are strictly required to define the following variables prior to HATCH being called: NREG, the
number of regions in the geometry; MED, an array containing the material numbers (as set prior
to the call to PEGS5) of each region, and EMAXE, the maximum total energy of any electron in the
problem. No other variables used by HATCH (and then by the EGS5 system in simulating showers),
need be explicitly specified. However, if the user wishes to use any of the non-default options or

14

features of EGS5, the appropriate flags for invoking such requests must be specified prior to the
call to HATCH , even if the data needed to execute such options has been generated by PEGS. All
of the variables processed by HATCH in setting up an EGS5 simulation are described below.

Variables required by HATCH

EMAXE This variable, the maximum energy of an electron in the problem, is located in COMMON

USERSC found in include/egs5 usersc.f, and is used by HATCH to perform checks on the compati-
bility of the EGS5 problem specification and the PEGS data file being used.

NREG HATCH uses the variable NREG when verifying and loading region-dependent options for the
problem materials.

MED The array MED, dimensioned MED(MXREG), contains the medium indices for each region (default
values are 1 for all MXREG). A medium index of zero means a region is vacuum. Indices are defined
by the order specified by the user, and are independent of the order in which the materials are
defined in the PEGS data file being used. Consider the three media example above (from the
pre-PEGS5 initialization section with vacuum defined as a fourth regions. The EGS5 user code to
accomplish this might look like:

med(1)=3 !First region is AIR AT NTP

med(2)=1 !Second region is LEAD

med(3)=0 !Third region is VACUUM

med(4)=2 !Fourth region is STEEL

Optional variables and flags processed by HATCH

ECUT and PCUT The ECUT and PCUT arrays contain the cutoff energies (in MeV) for the termi-
nation of the tracking of charged particles and photons, respectively, for each region. They are
dimensioned ECUT(MXREG) and PCUT(MXREG) and are initialized to 0.0 in BLOCK SET. Note that
HATCH will override any user defined values of ECUT and PCUT if these values are lower than the
threshold energies set in PEGS for the generation of secondary electrons and photons (the param-
eters AE and AP). Thus, by assigning values of ECUT and PCUT prior to the HATCH call, the user can
raise (but not lower) the cutoff energies. This can be illustrated by considering the four region
example from above. The statements

do i=1,3

ecut(i)=10.0

15

pcut(i)=100.0

end do

when put in Step 3 of the user code result in charged particle histories being terminated at 10.0
MeV (total energy) and photon histories being terminated at 100.0 MeV in the first three regions
only. In the fourth region the respective cutoffs will be determined by the values of AE and AP as
established by PEGS. ECUT and PCUT are elements of COMMON BOUNDS .

IRAYLR The elements of this array (dimensioned IRAYLR(MXREG) and contained in COMMON/MISC/),
are set to 1 prior to calling HATCH when coherent (Rayleigh) scattering is to be modeled in particular
regions. Execution of EGS is terminated if Rayleigh scattering data is not included in the PEGS
data file, however.

INCOHR The elements of this array (dimensioned INCOHR(MXREG) and found in COMMON/MISC/),
are set to 1 prior to calling HATCH when incoherent scattering functions are to be used in sampling
Compton scattering angles in particular regions. Execution of EGS5 is terminated if the appropriate
incoherent scattering function data is not found in the PEGS data file being used, however. Note
that when INCOHR(I)=1, it is necessary to have used IBOUND=1 for the corresponding materials
when PEGS was run.

IPROFR The elements of this array (dimensioned IPROFR(MXREG) and accessed via COMMON/MISC/),
are set to 1 prior to calling HATCH if Doppler broadening of the energies of Compton scattered
photons is to be modeling in particular regions. EGS5 execution is terminated if the Doppler
broadening data is not found by HATCH in the PEGS data file being used, however. Note that when
IPROFR(I)=1, it is necessary to have set IBOUND=1 and INCOH=1 in the corresponding materials
when PEGS was run, and that MAIN must set INCOHR(I)=1 for the corresponding regions as well.

IMPACR The elements of this array (dimensioned IMPACR(MXREG) and found in COMMON/MISC/),
are set to 1 prior to calling HATCH when electron impact ionization is to be simulated in particular
regions. Execution of EGS5 is terminated if the electron impact ionization data is not found in the
PEGS data, however.

IPHTER The elements of this array (dimensioned IPHTER(MXREG) and located in COMMON/USERXT/),
are set to 1 if photoelectron angles are to be sampled in particular regions. The default (IPHTER=0)
assumes emission in the direction of the incident photon.

IEDGFL The elements of this array (dimensioned IEDGFL(MXREG) and passed in COMMON/EDGE2/),
are set to 1 if K and L-edge fluorescence is be explicitly modeled in specific regions.

16

IAUGER The elements of this array (dimensioned IAUGER(MXREG) and found in COMMON/EDGE2/),
are set to 1 if K and L-edge Auger electrons are to be generated in given regions.

LPOLAR The elements of this array (dimensioned LPOLAR(MXREG) and contained in COMMON/MISC/),
are set to 1 if linearly polarized photon scattering is to be modeled in specified regions.

DUNIT The parameter DUNIT defines the unit of distance to be used in the shower simulation (the
default is cm if DUNIT=1). On input to HATCH, DUNIT is interpreted as follows:

1. DUNIT > 0 means that DUNIT is the length of the distance unit expressed in centimeters. For
example, setting DUNIT=2.54 would mean that the distance unit would be one inch.

2. DUNIT < 0 means that the absolute value of DUNIT will be interpreted as a medium index. The
distance unit used will then be the radiation length for the medium, and on exit from HATCH,
DUNIT will be equal to the radiation length of that medium in centimeters. The obvious use
of this feature is for the case of only one medium with DUNIT=-1, which results in the shower
being expressed entirely in radiation lengths of the first medium.

Note that the unit of distance used in PEGS is the radiation length. After HATCH interprets DUNIT, it
scales all PEGS data by units of distance as specified by the user, so that all subsequent operations
in EGS will be performed with distances in units of DUNIT (default value: 1.0 cm).

K1HSCL and K1LSCL The parameters K1HSCL and K1LSCL permit the user to apply energy-
dependent scaling of the material-dependent scattering strength (which is roughly proportional to
the multiple-scattering step-size distance) on a region-by-region basis. When K1HSCL and K1LSCL

are non-zero for a region, the scattering strength at EMAXE is scaled by the factor K1HSCL and
the scattering strength at ECUT for the region is scaled by K1LSCL. Scaling at other electron ener-
gies is determined by logarithm interpolation. K1HSCL(MXREG) and K1LSCL(MXREG) are found in
COMMON/MISC/ and are initialized to 0.0 in BLOCK SET, which implies no scaling.

USEGSD If the user wishes to use the Goudsmit-Saunderson multiple-scattering distribution func-
tion instead of the Molière distribution function for a material, USEGSD(MXMED) must be set to
be non-zero prior to the call to HATCH. In the current version of EGS5, all regions must use the
Goudsmit-Saunderson distribution if any of them do. USEGSD is a part of COMMON block MEDIA.

RHOR Media of similar materials but with varying density in different regions can be defined by
setting non-zero values of the region density in the variable RHOR(MXREG) of COMMON/MISC/ prior
to calls to HATCH . This feature eliminates the need for the user to create a distinct new media
for each region which has a a given material but with a different density. Values of RHOR should

17

be specified in terms of the actual density in each region, not the density relative to the reference
density. RHOR is initialized to 0 in BLOCK SET and assigned the default density of the medium by
HATCH unless specified by the user prior to HATCH being called.

Flags and variables which may be set either before or after HATCH is called

The following variables can be set either before or after the call to HATCH.

TMXSET When TMXSET is .true., any multiple-scattering step, whether selected by the user or
determined by EGS5 using CHARD, which violate the Bethe criteria for the maximum allowed step
length (see chapter 2 of SLAC-R-730/KEK-2005-8) will be truncated in ELECTR to the maximum.
If the user wishes to over-ride this limit, TMXSET (which is material dependent and part of COMMON
MS and defaults to .true.) can be set to .false. at any point in an EGS5 user code.

ESTEPR Electron energy hinge steps are scaled on a region-dependent basis when users set non-
zero values of ESTEPR(MXREG) prior to a call to SHOWER. Since energy hinge step sizes are determined
in PEGS, ESTEPR provides the user the capability to take smaller or larger steps in certain materials
or regions for increased accuracy or efficiency, respectively. ESTEPR, which is part of EGS5 COMMON

USERSC, is initialized to 0.0 in BLOCK SET and ignored in ELECTR unless set by the user.

ESAVE The variable ESAVE, dimensioned ESAVE(MXREG) and part of COMMON USERSC, can be em-
ployed by users to speed computations for applications which involve the transport of electrons
across boundaries between scoring and non-scoring regions. For example, if a user is interested in
energy deposition in a gas detector, only those electrons which are energetic enough to escape the
solid walls surrounding the gas of the detector have a chance to be scored. Thus the simulation
of the transport in the walls of electrons with ranges less than the closest normal distances to the
outer walls adds nothing but CPU time to the simulation. If, however, the user specifies a non-zero
value of ESAVE for a given region, ELECTR will discard the electron if its energy is less than ESAVE

and its range is less than DNEAR (see below), thus speeding the computation. This technique is
commonly called “range rejection,” and is most effective when ESAVE is much larger than ECUT.
Note that the “range” of the electron is defined very crudely here, as simply E(NP) divided by the
stopping power of the medium. This assures that the decision to discard a particle based on range
rejection will be conservative as long as the stopping power of the medium increases at energies
below ESAVE.

IBRDST The parameter IBRDST, which has a default value of 0 and is part of COMMON BREMPR,
determines the procedure for determining the angle of bremsstrahlung photons (relative to the
incident electrons), as described below:

18

IBRDST Method for determining θ

0 fixed at m/Ĕ0

1 sampled from Koch and Motz formula 2BS

Values of IBRDST set by the user apply to all media and regions in a simulation.

IPRDST The value of the parameter IPRDST determines the method used for determining the angles
of electron and positron pairs resulting from photon pair-production in the same way that IBRDST
is used to select the sampling method for bremsstrahlung photon angles. IPRDST, which is part of
COMMON BREMPR, has a default value of 0 and controls pair electron angles (relative to the incident
photon direction) as follows:

IPRDST Method for determining θ
0 fixed at m/k
1 sampled from Motz, Olsen and Koch formula 3D-2000
2 sampled from Motz, Olsen and Koch formula 3D-2003

IEISPL and NEISPL In order to speed up EGS5 simulations for applications involving x-rays gen-
erated from electron-impact ionizations, a method for creating additional x-rays using the familiar
Monte Carlo technique of splitting is provided (see chapter 4 of SLAC-R-730/KEK-2005-8 for the
description of an EGS5 application involving splitting of particles). If the flag IEISPL, which is
part of COMMON EIICOM and defaulted to 0, is set to be 1, each electron-impact ionization event
which leads to the production of a characteristic x-ray will result in NEISPL appropriately weighted
x-rays being produced.

IBRSPL and NBRSPL The parameters IBRSPL and NBRSPL allow the user to improve the efficiencies
of simulations in which low-probability bremsstrahlung photon production is important by splitting
the secondary particles. The method is similar to that described above for splitting in x-ray
production following electron-impact ionization. When the parameter IBRSPL, which has a default
value of 0 and is found in COMMON BREMPR, is set to 1, each electron bremsstrahlung event will result
in the generation of NBRSPL appropriately weighted photons.

CEXPTR The parameter CEXPTR, found in COMMON USERVR, is a scaling factor which can be used
to either force or inhibit photon collisions in regions with cross section that are very small or very
large. If λ is the photon mean free path and we use C to represent the scaling factor CEXPTR, we
have for the interaction probability distribution:

p̃(λ)dλ = (1 − Cµ)e−λ(1−Cµ)dλ,

where the overall multiplier 1−Cµ is introduced to ensure that the probability is correctly normal-
ized, i.e.

∫
∞

0 p̃(λ)dλ = 1. For C = 0, we have the unbiased probability distribution e−λdλ. One sees

19

that for 0 < C < 1, the average distance to an interaction is stretched and for C < 0, the average
distance to the next interaction is shortened. Note that the average number of mean free paths to
an interaction, 〈λ〉, is given by 〈λ〉 =

∫
∞

0 λp̃(λ)dλ = 1
1−Cµ

.

NOMSCT The user may override all treatment of electron multiple-scattering in a given region by
setting the switch NOMSCT(MXREG) to be 1 for that region. NOMSCT which is a part of COMMON MISC

and is initialized 0, is used primarily as a debugging and code development tool, and is included in
this description for completeness only.

Random number generator initialization

Whenever EGS (including any part of the user code) requires a floating point random number taken
uniformly from the interval (0,1) to be returned to a variable (all EGS5 routines use the variable
name RNNOW), the following statement is required:

call randomset(rnnow)

EGS5 employs the random number generator RANLUX, implemented by James. Depending on
the input specification, called the “luxury level,” RANLUX provides random sequences which pass
different levels of tests for randomness and execute at different speeds. Independent random se-
quences for the same luxury level can be generated with RANLUX by simply specifying a different
input “seed,” any integer in the range from 1 to 231. The default luxury level, as defined in the vari-
able LUXLEV of COMMON RLUXDAT in file include/randomm.f, is 1, and the default seed, INSEED,
is 314159265. RANLUX is initialized by HATCH using the defaults for LUXLEV and INSEED unless the
user specifies different values prior to the HATCH call. In addition, users may initialize the generator
themselves at any time by invoking

call rluxinit

after specifying LUXLEV and INSEED.

The user may also restart RANLUX at any desired point in a previously used sequence of random
numbers using either of two ways. RANLUX keeps a tally of the number of random numbers delivered
through the variables MKOUNT and KOUNT as MKOUNT*100000000 + KOUNT, and MKOUNT and KOUNT

are accessible at all times through COMMON RLUXDAT . If the user calls RLUXINIT and supplies values
of MKOUNT and KOUNT in addition to LUXLEV and INSEED, the RANLUX will be restarted at exactly
that point in the sequence defined by MKOUNT and KOUNT.

Alternatively, the user may execute the following statement

20

call rluxout

at any time, at which point integer representations of the current values of the seeds in RANLUX will
be returned via the array ISDEXT of COMMON RLUXDAT . A call to RLUXINIT at any time when the
values of ISDEXT are non-zero will result in a restart of RANLUX based on the seeds in ISDEXT.

Thus the restart options can be summarized as follows:

1. A brute-force method involves calling RLUXINIT with the values of the luxury level, initial
seed, and number of delivered randoms up to the time of the desired restart. The values of
MKOUNT and KOUNT can be obtained at any time directly from COMMON RLUXDAT.

2. A more elegant restart using the actual seeds can be done by passing the integer seeds at the
time of the restart to RLUXINIT via ISDEXT in COMMON RLUXDAT. The seeds in ISDEXT can be
obtained for later restart at any convenient time (such as the end of a shower, or the end of
a batch) by a call to RLUXOUT.

B.4.4 Specification of Incident Particle Parameters (Step 4)

This step required in constructing a MAIN user code is self-explanatory. An example of suitable
coding is given as follows:

iqi=-1 !Incident particle is an electron

xi=0.0 !Particle coordinates

yi=0.0

zi=0.0

ui=0.0 !Direction cosines

vi=0.0

wi=1.0

iri=2 !Region number 2 is the incident region

wti=1.0 !Weight factor in importance sampling

ncases=10 !Number of histories to run

idinc=-1

ei=1000.d0 !Total energy (MeV)

ekin=ei+iqi*RM !Incident kinetic energy

Note that the variables initialized above are the ones passed to EGS5 subroutine SHOWER, as de-
scribed below in step 8.

21

B.4.5 HATCH Call (Step 5)

When the user code MAIN calls the EGS HATCH subroutine, EGS is “hatched” by executing some
necessary once-only initializations and reading material data for the media from a data set that
created by PEGS. The required call is, trivially:

! ==========

call hatch

! ==========

Some examples of reports from HATCH are shown below. The following is a typical output
message when DUNIT has not been changed (and Rayleigh data is included in the file):

RAYLEIGH DATA AVAILABLE FOR MEDIUM 1 BUT OPTION NOT REQUESTED.

EGS SUCCESSFULLY ’HATCHED’ FOR ONE MEDIUM.

For a non-default specification of DUNIT (DUNIT=2.54, for example), the output report from
HATCH would look like the following (for two media and no Rayleigh data):

DUNIT REQUESTED&USED ARE: 2.54000E+00 2.54000E+00(CM.)

EGS SUCCESSFULLY ’HATCHED’ FOR 2 MEDIA.

Failure to successfully “hatch” a medium because it could not be found in the PEGS data file
results in message below, and execution is terminated by HATCH .

END OF FILE ON UNIT 12

PROGRAM STOPPED IN HATCH BECAUSE THE

FOLLOWING NAMES WERE NOT RECOGNIZED:

(list of names)

Note that one cannot ask for the same medium twice, though one can define two media which are
physically identical to be distinct for the purposes of EGS by using different names for them in
PEGS input files.

B.4.6 Initializations for HOWFAR (Step 6)

As stated previously, HOWFAR is the routine that describes the translation of particles through
the geometry of the various regions in the problem. Note that initialization of data required by

22

HOWFAR may be done at any step prior to calling SHOWER in Step 8, and that in fact, for some
trivial versions of HOWFAR, no initializations are required at all. For versions of HOWFAR which model
realistic geometries, however, it is likely that some initialization will be required in MAIN or auxiliary
user subprograms called by MAIN. In such cases it will also be necessary that local auxiliary COMMON

blocks be defined to pass geometry data to HOWFAR.

B.4.7 Initializations for AUSGAB (Step 7)

This step is similar to initialization for HOWFAR above in that it could actually be done anywhere in
MAIN prior to SHOWER being called. An example initialization based on a three region geometry is
given here. Suppose that we wish to know the total energy deposited in each of the three regions.
We could declare a scoring array, ESUM in a COMMON block TOTALS in both MAIN and in AUSGAB as:

common/totals/esum(3)

This array would be initialized in MAIN by the statements:

do i=1,3

esum(i)=0.0

end do

Then the statement

esum(ir(np))=esum(ir(np)) + edep

in AUSGAB would keep a running total of the energy deposited in each region under consideration.
Note that global auxiliary subroutines ECNSV1 and NTALLY are provided with the EGS5 distribution
to facilitate scoring of energy deposition and the numbers of various types of events, respectively.

B.4.8 SHOWER Call (Step 8)

The calling sequence for SHOWER is:

call shower(iqi,ei,xi,yi,zi,ui,vi,wi,iri,wti)

All of the arguments in this call are declared real*8 in SHOWER , except for iqi and iri which are
integer. These variables, which can have any names the user wishes in MAIN , specify the charge,

23

total energy, position, direction, region index, and statistical weight of the incident particle, and are
used to fill the corresponding stack variables (see the listing in Table B.11). In a typical problem
SHOWER is called repeatedly in a loop over a number of “histories” or “cases” as in

do i=1,NCASES

call shower(iqi,ei,xi,....,etc.)

end do

The statistical weight WTI of the incident particle is generally taken as unity unless variance reduc-
tion techniques are employed by the user. Note that if IQI is assigned the value of 2, subroutine
SHOWER recognizes this as a pi-zero meson decay event, and two photons are added to the stack
with energies and direction cosines appropriately obtained by sampling.

Specification of electric vector of photon for SHOWER

This is necessary only if the incident particle is a photon and the scattering of linearly polarized
photons is being modeled. The following 3 examples illustrate the specification of the photon
electric field vector and the passing of that data to SHOWER.

Example 1. Completely linearly polarized photon source with electric vector along +y-direction:

ufi=0.0

vfi=1.0

wfi=0.0

do i=1,ncases

uf(1)=ufi

vf(1)=vfi

wf(1)=wfi

call shower(iqi,e,xi,yi,zi,ui,vi,wi,iri,wti)

end do

Example 2. Partially linearly polarized photon source with source propagation vector along
the z-direction and polarization vector along the y-axis with P=0.85 (P is the degree of linear
polarization):

ui=0.0

vi=0.0

wi=1.0

24

pval=0.85 ! Degree of linear polarization

pratio=0.5+pval*0.5 ! Ratio of y-polarization

do i=1,ncases

call randomset(value)

if(value.lt.pratio) then

ufi=0.0

vfi=1.0

wfi=0.0

else

ufi=1.0

vfi=0.0

wfi=0.0

end if

uf(1)=ufi

vf(1)=vfi

wf(1)=wfi

call shower(iqi,e,xi,yi,zi,ui,vi,wi,iri,wti)

end do

Example 3. Unpolarized photon source. In a photon transport simulation modeling linear po-
larization, an unpolarized photon source is automatically generated by setting:

uf(1)=0.0

vf(1)=0.0

wf(1)=0.0

inside the shower call loop.

B.4.9 Output of Results (Step 9)

This step is self-explanatory, and is included only for the sake of completeness.

B.5 Specifications for HOWFAR

EGS calls user code HOWFAR when it reaches the point at which it has determined, because of step-
size specifications and/or interaction probabilities, that it would like to transport the top particle
on the stack a straight line distance USTEP in the current media. All of the parameters of the

25

particle are available to the user via COMMON/STACK/ as described earlier. The user controls the
transport upon return to EGS by altering one or more of the following variables: USTEP, IDISC,
IRNEW, and DNEAR(NP). Except for DNEAR (which is in COMMON/STACK/), these are available to the
user via COMMON/EPCONT/. The ways in which these variables may be changed and the way EGS will
interpret these changes is discussed in detail below. (Note, flow diagrams for subroutines ELECTR

and PHOTON have been included in Appendix A of SLAC-R-730/KEK-2005-8 for the user who
requires a more complete understanding of what actually takes place during particle transport.)

IDISC If the user decides that the current particle should be discarded, then IDISC must be set
nonzero (the usual convention is to set IDISC=1).

A positive value for IDISC will cause the particle to be discarded immediately. A negative value
for IDISC will cause EGS to discard the particle when it completes the transport. EGS initializes
IDISC to zero, and if left zero no user requested discard will take place. For example, the easiest
way to define an infinite, homogeneous medium is with the HOWFAR routine:

subroutine howfar

return

end

In this case, particle transport will continue to take place until energy cutoffs are reached. However,
a common procedure is to set IDISC=1 whenever the particle reaches a discard region, e.g.outside
the problem geometry.

USTEP and IRNEW If immediate discard has not been requested, then the HOWFAR should check
to see whether transport by distance USTEP will cause a region boundary to be crossed. If no
boundary will be crossed, then USTEP and IRNEW may be left as they are. If a boundary will be
crossed, then USTEP should be set to the distance to the boundary from the current position along
the current direction, and IRNEW should be set to the region index of the region on the other side
of the boundary. For sophisticated geometries, this is the most complex part of the user code.

DNEAR(NP) The setting of DNEAR(NP) by the user is optional. However, in many situations a sig-
nificant gain in efficiency will result by defining DNEAR(NP) in HOWFAR. It is obvious that distance to
boundary calculations are computationally expensive and should be avoided whenever possible. For
electrons traveling in regions in which their step sizes are much smaller than the region dimensions,
interrogation of the problem geometry at each electron step can greatly slow the simulation. In
order to avoid this inefficiency, each particle has stored on the stack a variable called DNEAR(NP),
which is used by EGS to hold a lower bound on the distance from the particle’s current position
to the nearest region boundary. This variable is used by EGS in the following ways:

1. DNEAR for the incident particle is initialized to zero.

26

2. Whenever a particle is actually moved (by a straight line distance TVSTEP) the path length
transported is deducted from the DNEAR for the particle.

3. Whenever a particle interacts, the DNEAR values for the product particles are set from the
DNEAR value of the parent particle.

4. When EGS has decided it would like to transport the current particle by a distance USTEP

(which will be the distance to the next interaction), subroutine HOWFAR will be called to get
the user’s permission to go that far only if USTEP is larger than DNEAR. It is this feature which
permits EGS to avoid potentially cumbersome geometry computations whenever possible.

In summary, to take advantage of these efficiency features, the user should set DNEAR(NP) equal to
the perpendicular distance to the nearest region boundary from the particle’s current position. If it
is easier for the user to compute some quick lower bound on the actual nearest distance, this could
be used to set DNEAR with time savings depending on how close the lower bound is to the actual
nearest distance on the average. It should be understood, however, that if the boundary separations
are smaller than the mean step size, subroutine HOWFAR will still be called and the overall efficiency
will decrease as a result of having to perform the DNEAR calculation so many times. Finally, if the
medium for a region is vacuum, the user need not bother computing DNEAR, as EGS will always
transport to the next boundary in only one step in this case.

B.5.1 Sample HOWFAR User Code

Consider, as an example of how to write a HOWFAR subprogram, the three region geometry in B.2.
A particle is shown in Region 2 with coordinates (X,Y,Z) and direction cosines (U,V,W). We will
assume that the slab of thickness ZTHICK is semi-infinite (x and y-directions), and that particles
are immediately discarded whenever they go into Region 1 or Region 3. The following HOWFAR code
correctly models this geometry:

subroutine howfar

implicit none

include ’include/egs5_h.f’ ! Main EGS "header" file

include ’include/egs5_epcont.f’ ! COMMONs required by EGS5 code

include ’include/egs5_stack.f’

common/passit/zthick

real*8 zthick

real*8 deltaz ! Local variables

integer irnxt

27

| |

Region | Region | Region

| |

1 | 2 | 3

| |

| (X,Y,Z) |

| x |

| . |

Vacuum | . | Air at NTP

| . |

O---------.+----------------> Z

| |

| |.

| Iron | .

| | .

| | .

| | .

| | .

| | .

| | x

| | (U,V,W)

| |

| |

-->| ZTHICK |<--

| |

|

V

X

(Y into paper)

Figure B.2: A three-region geometry for a HOWFAR example code.

28

if (ir(np).ne.2) then

idisc = 1

return

end if

dnear(np) = dmin1(z(np),zthick-z(np))

!-----------------------------------

! Particle going parallel to planes

!-----------------------------------

if(w(np).eq.0) return

!--

! Check forward plane first since shower heading that way

! most of the time

!--

if (w(np).gt.0.0) then

deltaz=(zthick-z(np))/w(np)

irnxt=3

!---

! Otherwise, particle must be heading in backward direction.

!---

else

deltaz=-z(np)/w(np)

irnxt=1

end if

if (deltaz.le.ustep) then

ustep=deltaz

irnew=irnxt

end if

return

end

Note that a number of auxiliary geometry subprograms are distributed with the EGS5 Code
System in order to make it easier to write HOWFAR. For example, subroutine PLAN2P could have been
used in place of several lines above and the program would have been easier to read. Example user
codes which employ several of the auxiliary geometry subprograms are described in Chapter 4 of
SLAC-R-730/KEK-2005-8.

29

Table B.18: IARG values program status for default AUSGAB calls.

IARG Situation

0 Particle is going to be transported by distance TVSTEP.

1 Particle is going to be discarded because its energy is below the cutoff ECUT (for
charged particles) or PCUT (for photons)—but its energy is larger than the corre-
sponding PEGS cutoff AE or AP, respectively.

2 Particle is going to be discarded because its energy is below both ECUT and AE (or
PCUT and AP).

3 Particle is going to be discarded because the user requested it (in HOWFAR usually).

4 Part of particle energy is deposited due to the binding energy. This situation occurs
in one of the following 3 cases:

1. A photoelectric interaction has occurred and the difference in the electron
binding energy and the secondary particle (X-ray or Auger electron) energy is
deposited.

2. Compton interaction has occurred and the electron binding energy is deposited
locally. This is enabled only when the Doppler-broadening option is turned
on.

3. The K-shell EII has occurred and the difference between the electron binding
energy and the secondary particle (K-X ray) energy is deposited. This is
enabled only when the EII option is turned on.

B.6 Specifications for AUSGAB

The user subroutine AUSGAB is called at more than 40 places inside various EGS5 subroutines with
the statement:

call ausgab(iarg)

The argument IARG indicates the situation under which AUSGAB is being called. IARG can take
on 31 values starting from zero (i.e., IARG=0 through IARG=30), although only the first five are
called in the default version of EGS. The remaining 26 IARG situations must be “switched on” via
specification of the array IAUSFL. The 5 values of IARG which are turned on by default and the
corresponding situations in which they initiate calls to user code AUSGAB are given in Table B.18.

The above IARG values are the ones required in the majority of situations in which EGS5 is used
to simulate electromagnetic cascade shower development. In particular, IARG =0 is useful whenever
track lengths are being calculated or when charged particle ionization loss is being scored. The
large number of situations which initiate calls to AUSGAB for various IARG values allows the user
to extract information about EGS5 simulations without making changes to the EGS code. The

30

user controls when AUSGAB is to be called by specifying in the user code values of the integer flag
array, IAUSFL(J), for J=1 through 31. IAUSFL(J) takes on values of 1 or 0 depending on whether
AUSGAB is called or not, respectively. For J=1 through 5, which corresponds to IARG of 0 through 4,
IAUSFL(J) is set to 1 by default, and AUSGAB is always called for the situations listed in Table B.18
For the remaining values of J, corresponding to IARG =5 through 31, IAUSFL(J) is set to 0 by
default, and the user must modify IAUSFL(J) in order to initiate any desired AUSGAB calls. The
value for IARG and the corresponding situations for this upper set of IARG values are shown in
Table B.19.

Note that the code statuses for IARG values from 0 to 3 and from 5 to 24 are the identical
to those found in EGS4. A slight modification has been made in EGS5 for IARG of 4, and the
situations in which IARG values of 25 through 30 initiate a call to AUSGAB are newly added in EGS5.

As an example of how to write an AUSGAB subprogram, consider the previous three region
geometry of Figure B.2. Suppose that we wish to score only photons that emanate from Region 2
into Region 3. The AUSGAB subprogram that will accomplish this is given below (in this example
we print out the stack variables plus IARG).

subroutine ausgab(iarg)

implicit none

include ’include/egs5_h.f’ ! Main EGS "header" file

include ’include/egs5_stack.f’

integer iarg ! Arguments

if(iarg.eq.3.and.iq(np).eq.0.and.ir(np).eq.3) then

write(6,1000)e(np),x(np),y(np),z(np),u(np),v(np),w(np),

1 iq(np),ir(np),iarg

end if

1000 format(7g15.7,3i5)

return

end

31

Table B.19: IARG values, IAUSFL indices, and program status for AUSGAB calls.

IARG IAUSFL Situation

5 6 Particle has been transported by distance TVSTEP.

6 7 A bremsstrahlung interaction is to occur and a call to BREMS is about to be
made in ELECTR.

7 8 Returned to ELECTR after a call to BREMS was made.

8 9 A Møller interaction is to occur and a call to MOLLER is about to be made in
ELECTR.

9 10 Returned to ELECTR after a call to MOLLER was made.

10 11 A Bhabha interaction is to occur and a call to BHABHA is about to be made in
ELECTR.

11 12 Returned to ELECTR after a call to BHABHA was made.

12 13 An in-flight annihilation of the positron is to occur and a call to ANNIH is
about to be made in ELECTR.

13 14 Returned to ELECTR after a call to ANNIH was made.

14 15 A positron has annihilated at rest.

15 16 A pair production interaction is to occur and a call to PAIR is about to be
made in PHOTON.

16 17 Returned to PHOTON after a call to PAIR was made.

17 18 A Compton interaction is to occur and a call to COMPT is about to be made in
PHOTON.

18 19 Returned to PHOTON after a call to COMPT was made.

19 20 A photoelectric interaction is to occur and a call to PHOTO is about to be made
in PHOTON.

20 21 Returned to PHOTON after a call to PHOTO was made (assuming NP is non-zero).

21 22 Subroutine UPHI was just entered.

22 23 Subroutine UPHI was just exited.

23 24 A coherent (Rayleigh) interaction is about to occur.

24 25 A coherent (Rayleigh) interaction has just occurred.

25 26 An EII interaction is about to occur.

26 27 Returned to MOLLER after a call to EII was made.

27 28 An energy hinge is about to occur in ELECTR.

28 29 An energy hinge has just occurred in ELECTR.

29 30 A multiple-scattering hinge is about to occur in ELECTR.

30 31 A multiple-scattering hinge has just occurred in ELECTR.

32

B.7 UCSAMPL5 — An Example of a “Complete” EGS5 User
Code

The following user code, called UCSAMPL5, simulates electro-magnetic cascade showers initiated
by 1 GeV electrons that are incident (normally) on a 3 cm, semi-infinite slab of iron. The upstream
region of the slab is vacuum and the downstream region is air at NTP. A particle is discarded
whenever it leaves the slab (on either side), or whenever its total energy falls below a preset
cutoff energy of 100 MeV. (Note that the medium assigned to Region 3 is really not important
in this example, and was included solely for purposes of illustration.) Some of the stack variable
information E(NP), Z(NP), W(NP), IQ(NP), IR(NP), plus the IARG value, is printed out on the
printer (first 15 lines only) for photons reaching Region 3.

A total of 10 cases of incident electrons are run and the total energy fraction for each region is
summed and printed out at the end of the run for an energy balance check.

The UCSAMPL5 user code is given below.

!***

!

! **************

! * *

! * ucsampl5.f *

! * *

! **************

!

! A complete example of a EGS5 user code, using a simple plane

! geometry. For SLAC-R-730/KEK Report 2005-8.

!

! This user code corresponds to ucsampl4.mor for egs4.

! The following shows the geometry

!***

! *

! --- *

! 1-Dimensional Plane Z Geometry (ucsampl5 example) *

! --- *

! *

! Y (X into page) *

! ^ *

! | *

! | | *

! | Fe | Air *

! | | *

! | | *

! 1 GeV | | *

! ==========>+----+------------------------> Z *

! electron 0 3.0 *

! *

33

!***

!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

!---

!------------------------------- main code -----------------------------

!---

!---

! Step 1. Initialization

!---

implicit none

! ------------

! EGS5 COMMONs

! ------------

include ’include/egs5_h.f’ ! Main EGS "header" file

include ’include/egs5_bounds.f’

include ’include/egs5_edge.f’

include ’include/egs5_media.f’

include ’include/egs5_misc.f’

include ’include/egs5_thresh.f’

include ’include/egs5_useful.f’

include ’include/egs5_usersc.f’

include ’include/egs5_userxt.f’

include ’include/randomm.f’

! ----------------------

! Auxiliary-code COMMONs

! ----------------------

include ’auxcommons/lines.f’

common/passit/zthick

real*8 zthick

common/totals/esum(3)

real*8 esum

real*8 ei,ekin,etot,totke,xi,yi,zi, ! Arguments

* ui,vi,wi,wti

real tarray(2)

real t0,t1,timecpu,tt ! Local variables

real etime

integer i,idinc,iqi,iri,j,ncases

character*24 medarr(2)

! ----------

! Open files

! ----------

open(UNIT= 6,FILE=’egs5job.out’,STATUS=’unknown’)

34

! ====================

call counters_out(0)

! ====================

!---

! Step 2: pegs5-call

!---

! ==============

call block_set ! Initialize some general variables

! ==============

! ---------------------------------

! define media before calling PEGS5

! ---------------------------------

nmed=2

medarr(1)=’FE-RAYLEIGH ’

medarr(2)=’AIR AT NTP ’

do j=1,nmed

do i=1,24

media(i,j)=medarr(j)(i:i)

end do

end do

chard(1) = 3.0

chard(2) = 3.0

! ------------------------------

! Run PEGS5 before calling HATCH

! ------------------------------

write(6,100)

100 FORMAT(’ PEGS5-call comes next’)

! =============

call pegs5

! =============

!---

! Step 3: Pre-hatch-call-initialization

!---

med(1)=0

med(2)=1

med(3)=2

! ----------------------------------

! Set of option flag for region 2-3

! 1: on, 0: off

! ----------------------------------

35

nreg=3

do i=2,nreg

ecut(i)=100.0 ! egs cut off energy for electrons

pcut(i)=100.0 ! egs cut off energy for photons

iphter(i) = 0 ! Switches for PE-angle sampling

iedgfl(i) = 0 ! K & L-edge fluorescence

iauger(i) = 0 ! K & L-Auger

iraylr(i) = 0 ! Rayleigh scattering

lpolar(i) = 0 ! Linearly-polarized photon scattering

incohr(i) = 0 ! S/Z rejection

iprofr(i) = 0 ! Doppler broadening

impacr(i) = 0 ! Electron impact ionization

end do

! --

! Random number seeds. Must be defined before call hatch.

! ins (1- 2^31)

! --

inseed=1

luxlev=1

! =============

call rluxinit ! Initialize the Ranlux random-number generator

! =============

!---

! Step 4: Determination-of-incident-particle-parameters

!---

iqi=-1

xi=0.0

yi=0.0

zi=0.0

ui=0.0

vi=0.0

wi=1.0

iri=2

wti=1.0

ncases=1000

idinc=-1

ei=1000.D0

ekin=ei+iqi*RM

!---

! Step 5: hatch-call

!---

! Total energy of incident source particle must be defined before hatch

! Define posible maximum total energy of electron before hatch

if (iqi.ne.0) then

emaxe = ei ! charged particle

else

36

emaxe = ei + RM ! photon

end if

! ------------------------------

! Open files (before HATCH call)

! ------------------------------

open(UNIT=KMPI,FILE=’pgs5job.pegs5dat’,STATUS=’old’)

open(UNIT=KMPO,FILE=’egs5job.dummy’,STATUS=’unknown’)

write(6,130)

130 FORMAT(/,’ HATCH-call comes next’,/)

! ==========

call hatch

! ==========

! ------------------------------

! Close files (after HATCH call)

! ------------------------------

close(UNIT=KMPI)

close(UNIT=KMPO)

! --

! Print various data associated with each media (not region)

! --

write(6,140)

140 FORMAT(/,’ Quantities associated with each MEDIA:’)

do j=1,nmed

write(6,150) (media(i,j),i=1,24)

150 FORMAT(/,1X,24A1)

write(6,160) rhom(j),rlcm(j)

160 FORMAT(5X,’ rho=’,G15.7,’ g/cu.cm rlc=’,G15.7,’ cm’)

write(6,170) ae(j),ue(j)

170 FORMAT(5X,’ ae=’,G15.7,’ MeV ue=’,G15.7,’ MeV’)

write(6,180) ap(j),up(j)

180 FORMAT(5X,’ ap=’,G15.7,’ MeV up=’,G15.7,’ MeV’,/)

end do

!---

! Step 6: Initialization-for-howfar

!---

zthick=3.0

! plate is 3 cm thick

!---

! Step 7: Initialization-for-ausgab

!---

do i=1,nreg

esum(i)=0.D0

end do

37

nlines=0

nwrite=15

!---

! Step 8: Shower-call

!---

tt=etime(tarray)

t0=tarray(1)

write(6,190)

190 format(/,’ Shower Results:’,///,7X,’e’,14X,’z’,14X,’w’,10X,

1 ’iq’,3X,’ir’,2X,’iarg’,/)

do i=1,ncases

if (nlines.lt.nwrite) then

write(6,200) i,ei,zi,wi,iqi,iri,idinc

200 format(i2,3G15.7,3I5)

nlines=nlines+1

end if

call shower(iqi,ei,xi,yi,zi,ui,vi,wi,iri,wti)

end do

tt=etime(tarray)

t1=tarray(1)

timecpu=t1-t0

write(6,210) timecpu

210 format(/,’ Elapsed Time (sec)=’,1PE12.5)

!---

! Step 9: Output-of-results

!---

totke=ncases*ekin

write(6,220) ei,zthick,ncases

220 format(//,’ Incident total energy of electron=’,F12.1,’ MeV’,/, ’

*Iron slab thickness=’,F6.3,’ cm’,/, ’ Number of cases in run=’,I7,

*//,’ Energy deposition summary:’,/)

etot=0.D0

do i=1,nreg

etot=etot+esum(i)

esum(i)=esum(i)/totke

write(6,230) i, esum(i)

230 format(’ Fraction in region ’,I3,’=’,F10.7)

end do

etot=etot/totke

write(6,240) etot

38

240 FORMAT(//,’ Total energy fraction in run=’,G15.7,/,

*’ Which should be close to unity’)

! -----------

! Close files

! -----------

close(UNIT=6)

stop

end

!-------------------------last line of main code------------------------

!-------------------------------ausgab.f--------------------------------

! Version: 050701-1615

! Reference: SLAC-R-730, KEK-2005-8 (Appendix 2)

!---

!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

! --

! Required subroutine for use with the EGS5 Code System

! --

! A simple AUSGAB to:

!

! 1) Score energy deposition

! 2) Print out stack information

! 3) Print out particle transport information (if switch is turned on)

!

! --

subroutine ausgab(iarg)

implicit none

include ’include/egs5_h.f’ ! Main EGS "header" file

include ’include/egs5_epcont.f’ ! COMMONs required by EGS5 code

include ’include/egs5_stack.f’

include ’auxcommons/lines.f’

common/totals/esum(3)

real*8 esum

integer iarg ! Arguments

! ----------------------

! Add deposition energy

! ----------------------

esum(ir(np))=esum(ir(np)) + edep

! --

! Print out stack information (for limited number cases and lines)

! --

39

if (nlines.lt.nwrite) then

write(6,1240) e(np),z(np),w(np),iq(np),ir(np),iarg

1240 FORMAT(3G15.7,3I5)

nlines=nlines+1

end if

return

end

!--------------------------last line of ausgab.f------------------------

!-------------------------------howfar.f--------------------------------

! Version: 050701-1615

! Reference: SLAC-R-730, KEK-2005-8 (Appendix 2)

!---

!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

! --

! Required (geometry) subroutine for use with the EGS5 Code System

! --

! This is a 1-dimensional plane geometry.

! --

subroutine howfar

implicit none

include ’include/egs5_h.f’ ! Main EGS "header" file

include ’include/egs5_epcont.f’ ! COMMONs required by EGS5 code

include ’include/egs5_stack.f’

common/passit/zthick

real*8 zthick

real*8 deltaz ! Local variables

integer irnxt

if (ir(np).ne.2) then

idisc = 1

return

end if

dnear(np) = dmin1(z(np),zthick-z(np))

!-----------------------------------

! Particle going parallel to planes

!-----------------------------------

if(w(np).eq.0) return

!--

! Check forward plane first since shower heading that way

! most of the time

!--

40

if (w(np).gt.0.0) then

deltaz=(zthick-z(np))/w(np)

irnxt=3

!---

! Otherwise, particle must be heading in backward direction.

!---

else

deltaz=-z(np)/w(np)

irnxt=1

end if

if (deltaz.le.ustep) then

ustep=deltaz

irnew=irnxt

end if

return

end

!--------------------------last line of howfar.f------------------------

41

