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VARIANCE REDUCTION TECHNIQUES 1

On variance reduction:

\First, implement an elegant technique to save computer time.

Then, do it the long way to check that you implemented it correctly."

Martin J Berger

1 Introduction

In this lecture we discuss various techniques which may be used to make calculations more

e�cient. In some cases, these techniques require that no further approximations be made to the

transport physics. In other cases, the gains in computing speed come at the cost of computing

results that may be less accurate since approximations are introduced. The techniques may be

divided into 3 categories: those that concern electron transport only, those that concern photon

transport only, and other more general methods. The set of techniques we discuss does not

represent an exhaustive list. There is much reference material available and we only cite a few

of them (refs. [1], [2], [3], [4],[5]). An especially rich source of references is McGrath's book [3],

which contains an annotated bibliography. Instead we shall concentrate on techniques that have

been of considerable use to the authors and their close colleagues. However, it is appropriate to

discuss briey what we are trying to accomplish by employing variance reduction techniques.

1.1 Variance reduction or e�ciency increase?

What we really mean to do when we employ variance reduction techniques is to reduce

the time it takes to calculate a result with a given variance. Analogue Monte Carlo calculations

attempt to simulate the full stochastic development of the electromagnetic cascade. Hence,

with the calculated result is associated a variance, s2. The method by which s2 is estimated

will not be discussed here. Let us assume that it is calculated by some consistent method. If

the variance is too large for our purposes we run more histories until our criterion is satis�ed.

How do we estimate how many more histories are needed? Assuming we can do this, what do

we do if it is too expensive to simulate the requisite number of histories? We may need a more

subtle approach than reducing variance by \grinding out" more histories.

Let us say we devise some \tricks" that allow us to reduce the variance by, say, a factor

of 10 using the same number of histories. Let's also imagine that this new subtle approach

we have devised takes, say, 20 times longer on average to complete a particle history. (For

example, our variance reduction technique may involve some detailed, expensive calculation

executed every particle step.) Although we have reduced the variance by a factor of 10, we take

20 times longer to calculate each particle history. We have actually reduced the e�ciency by

a factor of two! To add to the insult, we have wasted our own time implementing a technique

which reduces e�ciency!

We require a reliable �gure of merit which we may use to estimate gains in e�ciency of

a given \variance reduction" technique. It is common to use the e�ciency, �, de�ned by:

� =
1

s2T
; (1)

where T is a measure of the computing time used (e.g. CPU seconds). The motivation for

this choice comes from the following: We assume that mean values of quantities calculated by

Monte Carlo methods are distributed normally. It then follows that for calculations performed

using identical methods, the quantities s2N and s2T , where N is the number of histories, are
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constant, on average. This is so because N should be directly proportional to T . By considering

the e�ciency to be constant, eq. 1 may be used to estimate the total computing time required

to reach a given statistical accuracy if a preliminary result has already been obtained. For

example, if one wishes to reduce the uncertainty, s, by a factor of 2, one needs 4 times as many

histories. More importantly, eq. 1 allows us to make a quantitative estimate of the gain (or

loss!) in e�ciency resulting from the use of a given \variance reduction" technique since it

accounts for not only the reduction in variance but also the increased computing time it may

take to incorporate the technique. In the aforementioned example, using eq. 1 we would obtain

�(with subtlety)=�(brute force) = 0:5, a reduction of 1=2. In the following sections we attempt

to present more successful variance reduction techniques!

2 Electron-speci�c methods

2.1 Geometry interrogation reduction

This section might also have been named \Code optimisation" or \Don't calculate what

you don't really need", or something equivalent. We note that there is a fundamental dif-

ference between the transport of photons and electrons in a condensed-history transport code.

Photons travel relatively long distances before interacting and their transport steps are often in-

terrupted by boundary crossings (i.e. entering a new scoring region or element of the geometry).

The transport of electrons is di�erent, however. In addition to having its step interrupted by

boundary crossings or the sampling of discrete interactions, the electron has other constraints

on step-size. These constraints may have to do with ensuring that the underlying multiple

scattering theories are not being violated in any way (See the Lecture: Step-size dependencies

and PRESTA), or the transport may have to be interrupted so that the equations of transport

in an external electromagnetic �eld may be integrated [6]. Therefore, it is often unnecessary to

make repeated and expensive checks with the geometry routines of the transport code because

the electron is being transported in an e�ectively in�nite medium for most of the transport

steps. The EGS4 code [7], has an option that allows the user to avoid these redundant geome-

try subroutine calls. With this option switched on, whenever the geometry must be checked for

whatever reason, the closest distance to any boundary is calculated and stored. This variable

is then decremented by the length of each transport step. If this variable is greater than zero,

the electron can not be close enough to a boundary to cross it and the geometry subroutines

are not interrogated. If this variable drops to zero or less, the geometry subroutines are called

because a boundary crossing may occur.

There is no additional approximation involved in this technique. The gain in transport

e�ciency is slightly o�set by the extra calculation time that is spent calculating the distance

to the closest boundary. (This parameter is not always needed for other aspects of the particle

transport.) As an example, consider the case of a pencil beam of 1 MeV electrons incident

normally on a 0.3 cm slab of carbon divided into twelve 0.025 cm slabs. For this set of simu-

lations, transport and secondary particle creation thresholds were set at 10 keV kinetic energy

and we used EGS4 [7] setting the energy loss per electron step at 1% for accurate electron

transport [8] at low energies. The case that interrogates the geometry routines on every step is

called the \base case". We invoke the trick of interrogating the geometry routines only when

needed and call this the \RIG" (reduced interrogation of geometry) case. The e�ciency ratio,

�(RIG)=�(base), was found to be 1.34, a signi�cant improvement. (This was done by calculating
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DNEAR in the HOWFAR routine of a planar geometry code. A discussion of DNEAR is given

on pages 256{258 of the EGS4 manual [7].)

Strictly speaking, this technique may be used for photons as well. For most practical

problems, however, the mean free path for the photons in the problem is of the order, or greater

than the distance between boundaries. For deep penetration problems or similar problems, this

may not be true. However, this technique is usually more e�ective at speeding up the electron

transport part of the simulation.

The extra time required to calculate the distance to the closest boundary may be con-

siderable, especially for simulations involving curved surfaces. If this is so then the e�ciency

gain may be much less or e�ciency may be lost. It is advisable to test this technique before

employing it in \production" runs.

2.2 Discard within a zone

In the previous example, we may be just interested in the energy deposited in the planar

zones of the carbon slab. We may, therefore, deposit the energy of an electron entirely within

a zone if that electron's range is less than the distance to any bounding surface of the zone

in which it is being transported. We note that we make an approximation in doing this|we

neglect the creation and transport of any bremsstrahlung 's that may otherwise created. For

the worst possible case in this particular example, we will be discarding electrons that have

a range that is half of the zone thickness, i.e. having a kinetic energy of about 110 keV.

The radiative yield of these electrons is only about 0.07%. Therefore, unless we are directly

interested in the radiative component of the electron's slowing down process in this problem,

the approximation is an excellent one. For the above example, we realise a gain in the e�ciency

ratio, �(zonal discard + RIG)=�(base), of about 2.3. In this case, the transport cut-o�, below

which no electron was transported, was 10 keV. If we had used a higher cut-o� the e�ciency

gain would have been less.

Before adopting this technique, the user should carefully analyze the consequences of

the approximation|the neglect of bremsstrahlung from the low energy electron component.

2.3 PRESTA!

In a previous lecture, \Step-size dependencies and PRESTA", we discussed an alterna-

tive electron transport algorithm, PRESTA. This algorithm, by making improvements to the

physical modeling of electron transport, allows the use of large electron steps when one is far

away from boundaries. This algorithm may, therefore, be considered to be a variance reduc-

tion technique, since it saves computing time by employing small steps only where needed|in

the vicinity of boundaries and interfaces. Continuing with the present example, we calcu-

late the gain in e�ciency ratio, �(PRESTA)=�(base), to be 6.1. RIG is always switched on

with PRESTA, so it is actually fairer to calculate the e�ciency ratio, �(PRESTA)=�(RIG),

which was found to be 4.6. If we allow zonal discard as well, we calculate the e�ciency ra-

tio, �(zonal discard + PRESTA)=�(zonal discard + RIG), to be 3.1. There is a brief discussion

in the previous lecture on when PRESTA is expected to run quickly. Basically, the fewer the

boundaries and the higher the transport cuto�s, the faster PRESTA runs. A detailed discussion

is given in the PRESTA documentation [9].

2.4 Range rejection

As a �nal example of electron variance reduction, we consider the technique called \range
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rejection". This is similar to the \discard within a zone" except for a few di�erences. Instead

of discarding (i.e. stopping the transport and depositing the energy \on the spot") the electron

because it can not reach the boundaries of the geometrical element it is in, the electron is

discarded because it can not reach some region of interest. For example, a particle detector

may contain a sensitive volume where one wishes to calculate energy deposit, or some other

quantity. Surrounding this sensitive volume may be shields, converters, walls etc. where one

wishes accurate particle transport to be accomplished but where one does not wish to score

quantities directly. Electrons that can not reach the sensitive volume may be discarded \on the

spot", providing that the neglect of the bremsstrahlung 's causes no great inaccuracy.

As an example of range rejection, we consider the case of an ion chamber [10]. In

this case, a cylindrical air cavity, 2 mm in depth and 1.0 cm in radius is surrounded by 0.5

g/cm2 carbon walls. A at circular end is irradiated by 1.25 MeV -rays incident normally.

This approximates the irradiation from a distant source of 60Co. This is a \thick-walled" ion

chamber, so-called because it's thickness exceeds the range of the maximum energy electron that

can be set in motion by the incident photons. This sets up a condition of \near charged particle

equilibrium" in the vicinity of the cavity. The potential for signi�cant saving in computer time

is evident, for many electrons could never reach the cavity. We are interested in calculating the

energy deposited to the air in the cavity and we are not concerned with scoring any quantities

in the walls. The range rejection technique involved calculating the closest distance to the

surface of the cavity on every transport step. If this distance exceeded the CSDA range of

the electron, it was discarded. The omission of residual bremsstrahlung photon creation and

transport was negligible in this problem. The secondary particle creation thresholds were set

at 10 keV kinetic energy as well as the transport cut-o� energies. (ECUT=AE=0.521 MeV,

PCUT=AP=0.01 MeV, and ESTEPE=0.01 for accurate low energy simulation.) A factor of 4

increase in e�ciency was realised in this case.

Range rejection is a relatively crude but e�ective method. The version described above

neglects residual bremsstrahlung and is applicable when the discard occurs in one medium. The

bremsstrahlung problem could be solved by forcing at least some of the electrons to produce

bremsstrahlung. The amount of energy eventually deposited from these photons would have to

be weighted accordingly to keep the sampling game \fair". Alternatively, one could transport

fully a fraction, say f , of the electrons and weight any resultant bremsstrahlung photons by 1=f .

The other problem, the one of multi-media discard, is di�cult to treat in complete generality.

The di�culty is primarily a geometrical one. The shortest distance to the scoring region is

the shortest geometrical path only when the transport can occur in one medium. The shortest

distance we need to calculate for range rejection is the path along which the energy loss is a

minimum. It is not di�cult to imagine that �nding the \shortest" path for transport in more

than one medium may be very di�cult. For special cases this may be done or approximations

may be made. The \payo�" is worth it as large gains in e�ciency may be realised, as seen in

the above example.

3 Photon-speci�c methods

3.1 Interaction forcing

In problems where the interaction of photons is of interest, e�ciency may be lost because

photons leave the geometry of the simulation without interacting. The probability distribution
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for a photon interaction is:

p(�)d� = e��d�; (2)

where 0 � � < 1 and � is the distance measured in mean free paths. It can easily be shown

that sampling � from this distribution can be accomplished by the following formula1:

� = � ln(1� �); (3)

where � is a random number uniform on the range, 0 � � < 1. Since � extends to in�nity and

the number of photon mean free paths across the geometry in any practical problem is �nite,

there is a non-zero and often large probability that photons leave the geometry of interest

without interacting. If they don't interact, we waste computing time tracking these photons

through the geometry.

Fortunately, this waste may be prevented. We can force these photons to interact. The

method by which this can be achieved is remarkably simple. We construct the probability

distribution,

p(�)d�=
e��d�R �

0 e��
0

d�0
; (4)

where � is the total number of mean free paths along the direction of motion of the photon to

the end of the geometry. This � is restricted to the range, 0 � � < �, and � is selected from

the equation,

� = � ln(1� �(1� e��)): (5)

We see from eq. 5 that we recover eq. 3 in the limit � �! 1. Since we have forced the photon

to interact within the geometry of the simulation we must weight the quantities scored resulting

from this interaction. This weighting takes the form,

!0 = !(1� e��)); (6)

where !0 is the new \weighting" factor and ! is the old weighting factor. When interaction

forcing is used, the weighting factor, 1 � e��, simply multiplies the old one. This factor

is the probability that the photon would have interacted before leaving the geometry of the

simulation. This variance reduction technique may be used repeatedly to force the interaction

of succeeding generations of scattered photons. It may also be used in conjunction with other

variance reduction techniques. Interaction forcing may also be used in electron problems to

force the interaction of bremsstrahlung photons.

On �rst inspection, one might be tempted to think that the calculation of � may be

di�cult in general. Indeed, this calculation is quite di�cult and involves summing the contri-

butions to � along the photon's direction through all the geometrical elements and materials

along the way. Fortunately, most of this calculation is present in any Monte Carlo code because

it must possess the capability of transporting the photons through this geometry! This inter-

action forcing capability can be included in the EGS code in a completely general, geometry

independent fashion with only about 30 lines of code [11]!

The increase in e�ciency can be dramatic if one forces the photons to interact. For

example, for ion chamber calculations similar to those described in sec. 2.4 and discussed in

detail elsewhere [10], the e�ciency improved by the factor 2.3. In this calculation, only about

1It is conventional to use the expression, � = � ln(�), since both 1 � � and � are distributed uniformly

on (0,1) but the former expression executes more slowly. However, it has a closer connection to the following

mathematical development.
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6% of the photons would have interacted in the chamber. In calculating the dose to skin from

contaminant electrons arising from the interaction of 60Co (i.e. 1.25 MeV 's) in 100 cm of

air [11], the calculation executed 7 times more e�ciently after forcing the photons to interact.

In calculating the dose from 60Co directly in the skin (a 0.001 cm slice of tissue) where normally

only 6� 10�5 of the photons interact, the e�ciency improved by a factor of 2600 [11, 12]!

3.2 Exponential transform, russian roulette, and particle splitting

The exponential transform is a variance reduction technique designed to enhance e�-

ciency for either deep penetration problems (e.g. shielding calculations) or surface problems

(e.g. build-up in photon beams). It is often used in neutron Monte Carlo work and is directly

applicable to photons as well.

Consider the simple problem where we are interested in the surface or deep penetration

in a simple slab geometry with the planes of the geometry normal to the z-axis. We then scale

the interaction probability making use of the following formula:

~� = �(1� C�); (7)

where � is the distance measured in the number of mean free path's, ~� is the scaled distance, �

is the cosine of the angle the photon makes with the z-axis, and C is a parameter that adjusts

the magnitude of the scaling. The interaction probability distribution is:

~p(�)d� = (1� C�)e��(1�C�)d�; (8)

where the overall multiplier 1 � C� is introduced to ensure that the probability is correctly

normalised, i.e.
R1
0 ~p(�)d� = 1. For C = 0, we have the unbiased probability distribution

e��d�. One sees that for 0 < C < 1, the average distance to an interaction is stretched2. For

C < 0, the average distance to the next interaction is shortened. Examples of a stretched and

shortened distribution are given in �g. 1. In order to play the game fairly, we must obtain the

appropriate weighting function to apply to all subsequent scoring functions. This is obtained

by requiring that the overall probability be unchanged. That is, we require:

!0~p(�)d� = !p(�)d�; (9)

where !0 is the new weighting factor and ! is the old weighting factor. Solving eq. 9 for !0

yields,

!0 = !e��C�=(1� C�): (10)

Finally, we require a technique to sample the stretched or shortened number of mean

free paths to the next interaction point from a random number. It is easily shown that � is

selected using the formula:

� = � ln(�)=(1� C�); (11)

where � is a random number chosen uniformly over the range, 0 < � � 1.

For complete generality, one must obey the restriction, jCj < 1 since the photon's direc-

tion is arbitrary (�1 � � � 1). \Path-length stretching" means that 0 < C < 1, �.e. photons

are made to penetrate deeper. \Path-length shortening" means that �1 < C < 0, �.e. photons

are made to interact closer to the surface. For studies of surface regions, one may use a stronger

2Note that the average number of mean free paths to an interaction, h�i, is given by h�i =
R
1

0
�~p(�)d� =

1

1�C�
.
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Figure 1: Examples of a stretched (C = 1=2) and shortened (C = �1) distribution compared

to an unbiased one (C = 0). In all three cases, � = 1. For all three curves
R1
0 ~p(�)d� is unity.

The horizontal axis is in units of the number of mean free path's (mfp's).
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biasing, i.e. C � �1. If one used C � �1 indiscriminately, then nonsense would result for

particles going in the backward direction, i.e. � < 0. Sampled distances and weighting factors

become negative. It is possible to use C � �1 for special, but important cases. (As we shall

see in the next section, it is possible to remove all restrictions on C in �nite geometries by

combining exponential transforms and interaction forcing.) If one restricts the biasing to the

incident photons which are directed along the axis of interest (i.e. � > 0) then C � �1 may be

used. If one uses this severe biasing, then as seen in eq. 10, weighting factors for the occasional

photon that penetrates very deeply can get very large. If this photon backscatters and interacts

in the surface region where one is interested in gaining e�ciency, the calculated variance can

be undesirably increased. It is advisable to use a \splitting" technique [1], dividing these large

weight particles into a N smaller ones each with a new weight, !0 = !=N if they threaten

to enter the region of interest. Thresholds for activating this splitting technique and splitting

fractions are di�cult to specify and choosing them is largely a matter of experience with a given

type of application. The same comment applies when particle weights become vary small. If

this happens and the photon is headed away from the region of interest it is advisable to play

\russian roulette" [1]. This technique works as follows: Select a random number. If this random

number lies above a threshold, say �, the photon is discarded without scoring any quantity of

interest. If the random number turns out to be below � the photon as allowed to \survive" but

with a new weight, !0 = !=�, insuring the fairness of the Monte Carlo \game". This technique

of \weight windowing" is recommended for use with the exponential transform [13] to save

computing time and to avoid the unwanted increase in variance associated with large weight

particles.

Russian roulette and splitting3 can be used in conjunction with exponential transform,

but they enjoy much use by themselves in applications where the region of interest of a given

application comprises only a fraction of the geometry of the simulation. Photons are \split"

as they approach a region of interest and made to play \russian roulette" as they recede. The

three techniques, exponential transform, russian roulette and particle splitting are part of the

\black art" of Monte Carlo. It is di�cult to specify more than the most general guidelines on

when they would be expected to work well. One should test them before employing them in

large scale production runs.

Finally, we conclude this section with an example of severe exponential transform biasing

with the aim to improve surface dose in the calculation of a photon depth dose curve [11]. In this

case, 7 MeV 's were incident normally on a 30 cm slab of water. The results are summarised

in Table 1. In each case the computing time was the same. Therefore, the relative e�ciency

reects the relative values of 1=s2. As C decreases, the calculational e�ciency for scoring dose

at the surface increases while, in general, it decreases for the largest depth bin. The e�ciency

was de�ned to be unity for C = 0 at the for each bin. For the deepest bin there is an increase

initially because the mean free path is 39 cm. At �rst the number of interactions in the 10 cm{

30 cm bin increases! Note that as C is deceased the number of histories per given amount of

computing time decreases. This is because more electrons are being set it motion, primarily at

the surface. These electrons have smaller weights, however, to make the \game" fair.

3.3 Exponential transform with interaction forcing

If the geometry in which the transport takes place is �nite in extent, one may eliminate

restrictions on the biasing parameter, C, by combining exponential transform with interaction

3According to Kahn [1], both the ideas and terminology for russian roulette and splitting are attributable to
J. von Neumann and S. Ulam.
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Table 1: This series of calculations examines a case where a gain in the computational e�ciency

at the surface is desired. Each calculation took the same amount of computing time. In general,

e�ciency at the surface increases with decreased C while e�ciency worsens at depth.

C Histories Relative e�ciency on calculated dose

103 0{0.25 cm 6.0{7.0 cm 10{30 cm

0 100 �1 �1 �1

-1 70 1 1.0 3.5

-3 55 1.5 1.2 0.6

-6 50 3.5 2.8 0.1

forcing. By using the results of the previous two sections we �nd the interaction probability

distribution to be:

p(�)d�=
(1� C�)e��(1�C�)

1� e��(1�C�)
d�: (12)

The new weighting factor is:

!0 = !
(1� e��(1�C�))e��C�

1� C�
; (13)

and the number of mean free paths is selected according to:

� = �
ln(1� �(1� e��(1�C�)))

1� C�
; (14)

where � is a random number chosen uniformly over the range, 0 < � � 1.

In the case C ! 0, eqs. 12{14 reduce to the equations of simple interaction forcing given

in sec. 3.1. In the case � ! 1, eqs. 12{14 reduce to the equations of exponential transform

given in the previous section. However, the equations of this section permit any value of C to

be used irrespective of the photon's direction as long as the geometry is �nite, i.e. 0 < � <1.

In particular, the strong surface biasing, C < �1 need not be restricted to forward directed

photons (� > 0), and penetration problems may use C > 1. This latter choice actually causes

the interaction probability to increase with depth for forward directed photons! Again, as in

the previous section, the same comments about particle splitting, russian roulette, and weight

windowing apply.

4 General methods

4.1 Secondary particle enhancement

In some applications, one wishes to study the behaviour of secondary particles in an

energy regime where they are highly suppressed. For example, X-rays from diagnostic X-

ray tubes arise from bremsstrahlung radiation. The bremsstrahlung cross section is much

smaller than the M�ller cross section in the diagnostic regime (�70 keV). So, calculating the

bremsstrahlung characteristics by Monte Carlo method can be di�cult since most of the e�ort

is spent creating knock-on electrons. Another example would be the calculation of the e�ect of

pair production in low-Z materials in the radiotherapy regime, below 50 MeV.
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One approach is to enhance the number of these secondary particles by creating many

of them, say N , once an interaction takes place and then giving them all a weight of 1=N

to keep the game \fair". Once the interaction occurs, the secondary energy and directional

probabilities can be sampled to produce distributions in energy and angle of the secondary

particles emanating from a single interaction point. This method is more sophisticated than

\splitting" where N identical particles are produced.

It is important that the stochastic nature of the primary particle be preserved. For

this reason, the energy deducted from the primary particle is not the average of the secondary

particles produced. The proper \straggling" is guaranteed by subtracting the entire energy of

one of the secondary particles. This has the minor disadvantage that energy conservation is

violated for the incident particle history that produces the \spray" of secondaries. However,

over many histories and many interactions, energy conservation is preserved in an average sense.

The details of the implementation this method for the bremsstrahlung interaction in

the EGS4 code is documented elsewhere [14]. Examples of the use of this method in the

radiotherapy regime [15] and the diagnostic regime [16] have been published.

4.2 Sectioned problems, use of pre-computed results

One approach to saving computer time is to split the problem into separate, manageable

parts using the results of a previous Monte Carlo simulations as part of another simulation.

These applications tend to be very specialised and unique problems demand unique approaches.

For illustration, we shall present two related examples.

Fluence to dose conversion factors for monoenergetic, in�nitely broad electron and pho-

ton beams incident normally on semi-in�nite slabs of tissue and water have been calculated

previously [12, 17]. These factors, called KE(z), vary with depth, z, and on the energy of the

photon beam, E, at the water surface. Dose due to an arbitrary incident spectrum as a function

of depth, D(z), is calculated from the following relation:

D(z) =

Z Emax

Emin

�(E)KE(z)dE; (15)

where �(E) is the electron or photon uence spectrum and it is non-zero between the limits of

Emin and Emax. Each KE array represents a long calculation. If one uses these pre-calculated

factors, one can expect orders of magnitude gains in e�ciency. If one is interested in normally

incident broad beams only, the calculated results should be quite accurate. The only approxi-

mations arise from the numerical integration represented by eq. 15 and associated interpolation

errors. However, there are two important assumptions buried in the KE's|the incident beams

are broad and incident normally. For photons, using narrow beams in this method can cause

10% to 50% overestimates of the peak dose. For narrow electron beams this method is not

recommended at all.

Another example is the study of the e�ects of scatter in a 60Co therapy unit [18]. For

the purpose of modeling the therapy unit in a reasonable amount of computing time, it was

divided into two parts. First, the source capsule itself was modeled accurately and the phase

space parameters (energy, direction, position) of those particles leaving the source capsule and

entering the collimator system were stored. About 2� 106 particles were stored in this fashion

taking about 24 hrs of VAX 11/780 CPU time for executing the simulation. This data was then

used repeatedly in modeling the transport of particles through the collimators and �lters of the

therapy head. The approximation inherent in this stage of the calculation is the interaction

between the source capsule and the rest of the therapy head. However, since the capsule is
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small with respect to the therapy head and we are interested in calculating the e�ects of the

radiation somewhat downstream from the therapy head, the approximation is an excellent one.

Another aspect of this calculation was that the e�ect of the contaminant electrons downstream

from the therapy head was studied. Again, this part of the calculation was \split o�" and

done by the method described previously. That is, eq. 15 was used to calculate the depth-dose

pro�les in tissue.

By splitting the problem into 3 parts, the total amount of CPU time used to simulate

the 60Co therapy head [18] required 5{16 hours of CPU time for each geometry. If we had

attempted to simulate the problem entirely without \dividing and conquering", the amount of

CPU time required would have been prohibitive.

4.3 Geometry equivalence theorem

A special but important subset of Monte Carlo calculations is normal beam incidence

on semi-in�nite geometries, with or without in�nite planar inhomogeneities. The use of a

simple theorem, called the \geometry equivalence" or \reciprocity" theorem, provides an elegant

technique for calculating some results more quickly. First we prove the theorem.

Imagine that we have a zero radius beam coincident with the z-axis impinging on the

geometry described above. We \measure" a response that must have the form f(z; j�j), where

� is the cylindrical radius. This functional form holds true since there is no preferred azimuthal

direction in the problem. If the beam is now shifted o� the axis by an amount �0, then the new

functional form of the response must have the form, f(z; j�� �
0j), by translational symmetry.

Finally, consider that we have a �nite circular beam of radius �b and we wish to integrate the

response over a �nite-size detection region with circular radius �d. This integrated response

has the form,

F (z; �b; �d) =

Z j�
0
j��b

d�0
Z j�j��d

d� f(z; j�� �
0j); (16)

where
R j�j��d d� is shorthand for

R 2�
0 d�

R �d
0 d�. If we exchange integration indices in eq. 16,

then we obtain the reciprocity relationship,

F (z; �b; �d) = F (z; �d; �b): (17)

What eq. 17 means is the following: If we have a circular beam of radius �b and a circular

detection region of radius �d, then the response we calculate is the same if we had a circular

beam of radius �b and a circular detection region of radius �d! The gain in e�ciency comes

when we wish to calculate the response of a small detector in a large area beam. If one does the

calculation directly, then much computer time is squandered tracking particles that may never

reach the detector. By using the reciprocity theorem one calculates the same quantity faster.

In an extreme form the reciprocity theorem takes the form [19],

lim
�!0

F (z; �b; �) = lim
�!0

F (z; �; �b); (18)

which allows one to calculate the \central axis" depth-dose for a �nite radius beam by scoring

the dose in a �nite region from a zero-area beam. The gain in e�ciency in this case is in�nite!

The radius, �b, can even be in�nite to simulate a broad beam.

A few remarks about the reciprocity theorem and it's derivation should be made. If the

response function, f(z; j�j), has a �nite lateral extent, then the restriction that the geometry

should be semi-in�nite may be relaxed as long as the geometry, including the inhomogeneous
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slabs, is big enough to contain all of the incident beam once the detection region radius and the

beam radius are exchanged. Unfortunately, electron-photon beams always produce in�nitely

wide response functions owing to radiation scatter and bremsstrahlung photon creation. In

practice, however, the lateral tails often contribute so little that simulation (and experiments!)

in �nite geometries is useful. Also, in the above development it was assumed that the detection

region was in�nitely thin. This is not a necessary approximation but this detail was omitted

for clarity. The interested reader is encouraged to repeat the derivation with a detection region

of �nite extent. The derivation proceeds in the same manner but with more cumbersome

equations.

4.4 Use of geometry symmetry

In the previous section, we saw that the use of some of the inherent symmetry of the

geometry realised considerable increase in e�ciency. Some uses of symmetry are more obvious,

for example, the use of cylindrical-planar or spherical-conical simulation geometries if both the

source and target con�gurations contain these symmetries. Other uses of symmetry are less

obvious but still important. These applications involve the use of reecting planes to mimic

some of the inherent symmetry.

For example, consider the geometry depicted in �g. 2. In this case, an in�nite square

lattice of cylinders is irradiated uniformly from the top. The cylinders are all uniform and

aligned. How should one approach this problem? Clearly, one can not model an in�nite array

of cylinders. If one tried, one would have to pick a �nite set and decide somehow that it was

big enough. Instead, it is much more e�cient to exploit the symmetry of the problem. It turns

out that in this instance, one needs to transport particles in only 1=8'th of a cylinder! To see

this we �nd the symmetries in this problem. In �g. 2 we have drawn three planes of symmetry

in the problem, planes a, b, and c4. There is reection symmetry for each of these planes.

Therefore, to mimic the in�nite lattice, any particles that strike these reecting planes should

be reected. One only needs to transport particles in the region bounded by the reecting

planes. Because of the highly symmetric nature of the problem, we only need to perform the

simulation in a portion of the cylinder and the \response" functions for the rest of the lattice

is found by reection.

The rule for particle reection about a plane of arbitrary orientation is easy to derive. Let

~u be the unit direction vector of a particle and ~n be the unit direction normal of the reecting

plane. Now divide the particle's direction vector into two portions, ~uk, parallel to ~n, and ~u?,

perpendicular to ~n. The parallel part gets reected, ~u0k = �~uk, and the perpendicular part

remains unchanged, ~u0? = ~u?. That is, the new direction vector is ~u0 = �~uk + ~u?. Another

way of writing this is,

~u0 = ~u� 2(~u � ~n)~n: (19)

Applying eq. 19 to the problem in �g. 2, we have: For reection at plane a, (u0x; u
0
y; u

0
z) =

(�ux; uy; uz). For reection at plane b, (u0x; u
0
y; u

0
z) = (ux;�uy ; uz). For reection at plane c,

(u0x; u
0
y; u

0
z) = (�uy ;�ux; uz). The use of this reection technique can result in great gains in

e�ciency. Most practical problems will not enjoy such a great amount of symmetry but one is

encouraged to make use of any available symmetry. The saving in computing time is well worth

the extra care and coding.

4Note that this symmetry applies only to a square lattice, where the spacing is the same for the x and y-axes.

For a rectangular symmetry, the planes of reection would be somewhat di�erent.
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Figure 2: Top end view of an in�nite square lattice of cylinders. Three planes of symmetry are

drawn, a, b, and c. A complete simulation of the entire lattice may be performed by restricting

the transport to the interior of the three planes. When a particle strikes a plane it is reected

back in, thereby mimicking the symmetry associated with this plane.
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