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Sir,

In your otherwise beautiful poem (The Vision of Sin) there is a verse which reads

\Every moment dies a man,

every moment one is born."

Obviously, this cannot be true and I suggest that in the next edition you have it

read

\Every moment dies a man,

every moment 1 1

16
is born."

Even this value is slightly in error but should be su�uciently accurate for poetry.

...Charles Babbage (in a letter to Lord Tennyson)

1 Introduction

In this lecture we discuss some of the elements of the Monte Carlo technique. We consider

some of the basic constituents that are essential to any Monte Carlo calculation, speci�cally,

the generation of random numbers, the use of statistics that determine the quality of the

calculated results, the de�nition of e�ciency of a calculation and elementary sampling theory.

The lecture concludes with a selection of examples of selecting from probability distributions.

2 Pseudo Random Number Generators

2.1 State-of-the-art ca 1987

The \pseudo" random number generator (RNG) is the \soul" of a Monte Carlo calculation.

It is what generates the pseudo-random nature of Monte Carlo simulations thereby imitating

the true stochastic nature of particle interactions. Consequently, much mathematical study has

been devoted to RNG's [1, 2, 3]. These three references are excellent reviews of RNG theory

and methods up to about 1987.

The operative phrase to be used when considering RNG's is \use extreme caution".

DO USE an RNG that is known to work well and is widely tested. DO NOT FIDDLE with

RNG's unless you understand thoroughly the underlying mathematics and have the ability to

test the new RNG thoroughly. DO NOT TRUST RNG's that come bundled with standard

mathematical packages. For example, DEC's RAN RNG (a system utility) and IBM's RANDU

(part of the SSP mathematical package) are known to give strong triplet correlations. This

would a�ect, for example, the \random" seeding of an isotropic distribution of point sources

in a 3-dimensional object. A picture of an artefact generated by these RNG's s given in the

Lecture \Running EGS4 on di�erent architectures".

The gathering of random numbers into planes is a well-known artefact of RNG's. Marsaglia's

classic paper [4] entitled \Random Numbers fall mainly in the Planes", describes how random

numbers gather into (n � 1)-dimensional hyperplanes in n-space for n > 2. Good RNG's ei-

ther maximise the number of planes that are constructed to give the illusion of randomness
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or eliminate this artefact entirely. One must be aware of this behaviour in case anomalies do

occur.

We provide two standard RNG's for use with EGS, an IBM and a VAX version. To our

knowledge, no one has yet reported any anomalous results from these RNG's. The IBM version

takes the form:

:Initialisation: INTEGER IX(2);

REAL*8 DRN;

EQUIVALENCE (IX(1),DRN);

DATA IX(1)/Z46000000/;

IXX = 987654321;

:Iteration: IXX = IXX * 663608941;

IX(2) = IXX;

R = DRN + 0.0D0;

This coding takes advantage of the IBM-speci�c hardware implementation of the ma-

nipulation of unnormalised oating point numbers. The changes in IX(2) change the lower

order bits of DRN while the �xed group of higher order bits established by IX(1) guarantees the

normalisation over the range [0; 1]. (The addition with zero in the last line normalises the real

oating point number.)

This is a very fast RNG taking only 4 fetches, 3 stores, one integer multiplication, one

oating point multiplication, one oating point addition, and one type conversion from double

to single precision (which is not always required). The disadvantage of this routine is that it is

not transportable to other computer systems.

An equivalent but more transportable and slower routine is the VAX version:

:Initialisation: IXX = 987654321;

:Iteration: IXX = IXX * 663608941;

R = 0.5 + IXX * 0.23283064E-09;

This routine uses 4 fetches, 2 stores, 2 oating point operations, and one integer to real

type conversion. This routine is transportable to all machines with a 32-bit, 2's-complement

integer representation.

These RNG's are the most heavily used computer coding in EGS. In order to save the

overhead of unnecessary calls to subroutines (20 to 1000 machine cycles), they are not used as

subroutines but are inserted \in-line" wherever they are needed.

Good RNG's have large cycles. The cycle of a RNG is the number or random numbers

it produces before repeating. The cycle of our RNG is 230, which is the theoretical upper limit

for this class of RNG. It is essential, however, that the RNG be seeded with an odd number,

otherwise the cycle would be 1! This is because a multiplication by 2 is equivalent to a left bit

shift. At most 32 iterations would be needed to cause IXX to become 0. At this point it remains

0 for all remaining interactions. Note that the modi�cation of IXX causes an overow as the

unnecessary bits \spill" over the left side. Consequently, integer overow/underow trapping

should be disabled when using these RNG's.
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2.2 New Random Number Generators

Recently, new forms of random number generators based on lagged-Fibonacci sequences have

been devised [5, 6] that have extremely long repeat sequences (up to 2926 real numbers with

24-bit fractions!). A \universal" RNG (with a period length of 2144) based on this approach

has been proposed that has been shown to produce identical sequences on the entire spectrum

of computers, from IBM PC's (kFLOP's) to ETA supercomputers (GFLOP's).

This is the future direction of RNG's and is discussed further in the Lecture \Running

EGS4 on di�erent architectures".

3 Statistical analysis

3.1 Estimating errors

Assume that x is a quantity we calculate during the course of a Monte Carlo simulation, i.e.

a scoring variable. The output of a Monte Carlo calculation is usually useless unless we can

ascribe a probable error to it.

The conventional approach to calculating the probable error is as follows:

� Assume that the calculation calls for N \incident" particle histories.

� Split the N histories into n statistical batches of N=n histories each. (e.g. We have

chosen n = 10 as a standard for our calculations.) The calculated quantity for each of

these batches is called xi.

� Calculate the mean value of x:

x =
1

N

nX
i=1

xi (1)

� Estimate the variance associated with the distribution of the xi:

s2x =
1

n� 1

nX
i=1

(xi � x)2 =
1

n� 1

nX
i=1

(x2i � x2) (2)

� The estimated variance of x is the standard variance of the mean:

s2x =
s2x
n

(3)

(It is the error in x we are seeking, not the \spread" of the distribution of the xi.)

� Report the �nal result as x = x� sx.

Remarks:

The derivation of eq. 3 assumes that the xi are normally distributed about x. This is an

assumption. Yet, we use eq. 3 with n = 10 because it still gives a reasonable estimate of the

error in x. In reality, decisions based upon the error in x are usually subjective in nature. We

have found that when the errors are large (> 5% or so), the errors tend to be underestimated.

For smaller errors the values tend to be sensible. There is some evidence that the calculated

statistic depends weakly on the choice of n (8 to 12% or so). Therefore, it is important to

report how your statistics were done when you publish your Monte Carlo results.
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3.2 Combining errors of independent runs

For m independent Monte Carlo runs, it is easy to derive the following relation:

x =
mX
j=1

�
Nj

N

�
xj (4)

where xj is the value of x for the jth run and Nj is the number of histories in the jth run. The

total number of histories is given by:

N =
mX
j=1

Nj (5)

Then, assuming 1st-order propagation of independent errors, it is also easy to derive:

s2x =
mX
j=1

�
Nj

N

�
2

s2xj (6)

where s2xj is the estimated variance in xj .

Example: For m = 2:

x =

�
N1

N

�
x1 +

�
N2

N

�
x2 (7)

N = N1 +N2 (8)

sx =

s�
N1

N

�
2

s2x1 +

�
N2

N

�
2

s2x2 (9)

Remarks:

This method of combining errors e�ectively increases the value of n, the number of statistical

batches used in the calculation. In view of the fact that the calculated statistics are thought

to depend weakly on n, it is preferable (but only marginally so for the sake of consistency) to

combine the xi's (the raw data) into the standard number of statistical batches. This is easy

to do by initialising the data arrays to the results of the previous run before the start of a new

run.

4 E�ciency

See text at beginning of Lecture \Variance reduction techniques".

5 Elementary sampling theory

Having considered RNG's in some detail, we now relate random numbers (RN's) to physical

variables that one must obtain from given probability distribution functions (PDF's).
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Figure 1: A typical probability distribution.
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5.1 Invertible cumulative distribution functions (direct method)

A typical PDF is shown in �g. 1. It is de�ned over the range [a; b] where neither a nor b

are necessarily �nite. A PDF must have the properties that it is integrable (so that one can

normalise it by integrating it over its entire range) and that it is non-negative. (Negative

probability distributions are di�cult to interpret.)

We now construct its cumulative probability function (CDF):

r = CDF(x) =

Z x

a
dx0 PDF(x0) (10)

and assume that it is properly normalised, i.e. CDF(b) = 1. The corresponding CDF for our

example is shown in �g. 2.

By its de�nition, we can map the CDF onto the range of random variables, r, where

0 � r � 1. Now consider two equally spaced intervals dx1 and dx2, di�erential elements in x

in the vicinity of x1 and x2. Using some elementary calculus we see that:

dr1

dr2
=

(d=dx)CDF(x)jx=x1
(d=dx)CDF(x)jx=x2

=
PDF(x1)

PDF(x2)
(11)

We can interpret this as meaning that, if we select many random variables in the range

[0,1], then the number that fall within dr1 divided by the number that fall within dr1 is equal

to the ratio of the probability distribution at x1 to x2.

Having mapped the random numbers onto the CDF, we may invert the equation to give:

x = CDF�1(r) (12)

All CDF's that arise from properly de�ned PDF's are invertible, numerically if not analytically.

Then, by choosing r's randomly over a uniform distribution and substituting them in

the above equation, we generate x's according to the proper PDF.

Example:

The number of mean free paths (MFP's), z, to an interaction is governed by the well-known

PDF:

PDF(z) = e�z (13)

The valid range of z is 0 � z < 1 and this PDF is already properly normalised. The corre-

sponding CDF and its random number map is given by:

r = CDF(z) = 1� e�z (14)

Inverting gives:

z = � log(1� r) (15)

If r is uniformly distributed over [0; 1] then so is 1�r. An equivalent form of the above equation

(that saves one oating point operation) is:

z = � log(r) (16)

This is exactly the form used to calculate particle MFP's in EGS.
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Figure 2: The cumulative probability distribution obtained by integrating the PDF in �g. 1.
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5.2 Rejection method

While the invertible CDF method is always possible, at least in principle, it is often impracti-

cal to calculate CDF�1 because it may be exceedingly complicated mathematically. Another

approach is to use the rejection method.

In recipe form, the procedure is this:

1. Scale the PDF by its maximum value obtaining a new PDF, PDF0 =PDF/PDFmax, which

has a maximum value of 1 (see �gs. 3 and 4). Clearly, this method works only if the PDF

is not in�nite anywhere and if it is not prohibitively di�cult to determine the location of

the maximum value.

2. Choose a random number, r1, uniform in the range [0; 1] and use it to obtain an x which

is uniform in the PDF's range [a,b]. (To do this, calculate x = a + (b � a)r1.) (Note:

This method is restricted to �nite values of a and b. However, if either a or b are in�nite

a suitable transformation may be found to allow one to work with a �nite range. e.g.

x 2 [a;1) may be mapped into y 2 [0; 1) via transformation x = a[1� log(1� y)].)

3. Choose a second random number r2. If r2 < PDF(x)=PDFmax (region under PDF(x)=PDFmax

in �g. 4) then accept x, else, reject it (shaded region above PDF(x)=PDFmax in �g. 4)

and go back to step 2.

Remarks:

This method will result in x being selected according to the PDF. Some consider this method

\crude" because random numbers are \wasted" unlike the invertible CDF method. It is partic-

ularly wasteful for \spiked" PDF's. However, it can save computing time if the CDF�1 is very

complicated. One has to \waste" many random numbers to use as much computing time as in

the evaluation of a transcendental function!

5.3 Mixed methods

As a �nal topic in elementary sampling theory we consider the \mixed method", a combination

of the previous two methods.

Imagine that the PDF is too di�cult to integrate and invert, ruling out the direct

approach without a great deal of numerical analysis, and that it is \spiky", rendering the

rejection method ine�cient. (Many probability distributions have this objectionable character.)

However, imagine that the PDF can be factored as follows:

PDF(x) = f(x)g(x) (17)

where f(x) is an invertible function that contains most of the \spikiness", and g(x) is relatively

at but contains most of the mathematical complexity.

The recipe is as follows:

1. Normalise f(x) producing ~f(x) such that
R b
a dx

~f(x) = 1.

2. Normalise g(x) producing ~g(x) such that ~g(x) � 1 8 x 2 [a; b].
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Figure 3: A typical probability distribution.
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Figure 4: The probability distribution of �g. 3 scaled for the rejection technique.
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3. Using the direct method described previously, choose an x using ~f(x) as the PDF.

4. Using this x, apply the rejection technique using ~g(x). That is, choose a random number,

r, uniformly in the range [0; 1]. If ~g(x) � r, accept x, otherwise go back to step 3.

Remarks:

With some e�ort, any mathematically complex, spiky function can be factored in this man-

ner. The art boils down to the appropriate choice of ~f(x) that leaves a ~g(x) that is nearly at.

For two recent examples of this method as applied to the EGS4 code, see refs. [7] and [8].

5.4 Examples of sampling techniques

5.4.1 Circularly collimated parallel beam

The normalised probability distribution in this case is:

d2p(�; �) =
1

��2
0

�d�d� 0 � � � �2
0

0 � � � 2� (18)

where � is the cylindrical radius, �0 is the collimation radius and � is the azimuthal angle.

�d�d� is a di�erential surface element in cylindrical coordinates. This is a separable probability

distribution of the form:

d2p(�; �) = dp1(�)dp2(�) (19)

where:

dp1(�) =
2

�2
0

�d� 0 � � � �0 (20)

and

dp2(�) =
1

2�
d� 0 � � � 2� (21)

Direct method

The CDF's in this case are:

CDF1(�) = c1(�) =
2

�2
0

Z �

0

d�0�0 =
�2

�2
0

(22)

CDF2(�) = c2(�) =
1

2�

Z �

0

d�0 =
�

2�
(23)

Inverting gives:

� = �0
p
�1 (24)

� = 2��2 (25)

where the �i are random numbers on the range [0; 1].

The code segment that would produce the input phase-space parameters required by

EGS looks like:
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.

.

.

$RANDOMSET xi_1; rho = rho_0 * sqrt(xi_1);

$RANDOMSET xi_2; phi = two_pi * xi_2;

x = rho * cos(phi);

y = rho * sin(phi);

.

.

.

Rejection method

In this technique, a point is chosen randomly within the square �1 � x � 1;�1 � y � 1.

If this point lies within a circle with unit radius the point is accepted and the x and y val-

ues scaled by the collimation radius, �0. The code segment that would produce the input

phase-space parameters required by EGS looks like:

.

.

.

LOOP

[

$RANDOMSET xi_1; x = 2 * xi_1 - 1;

$RANDOMSET xi_2; y = 2 * xi_2 - 1;

IF(x**2 + y**2 <= 1) EXIT;

]

x = rho_0 * x;

y = rho_0 * y;

.

.

.

Which is better?

Actually, both methods are equivalent mathematically. However, one or the other may have

advantages in execution speed depending on other factors in the application. If the geometry

is not cylindrically symmetric or all the scoring that is done does not make use of the inherent

cylindrical symmetry, then the rejection method is about twice as fast as the direct method

because the trigonometric functions are not employed in the rejection method. (The default

EGS4 trigonometric approximations were not employed during this test and the timing data

was obtained on a Sun Workstation.)

If the geometry is cylindrically symmetric and the scoring takes advantage of this symme-

try, then the direct method is about 2{3 times faster because symmetry reduces the calculation

to:

.
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.

.

$RANDOMSET xi_1; x = rho_0 * sqrt(xi_1);

y = 0;

.

.

.

5.4.2 Point source collimated to a planar circle

The normalised probability distribution in this case is:

d2p(�; �) =
d�

2�

sin �d�

1� cos �0
0 � � � �0 0 � � � 2� (26)

where � is the polar angle and � is the azimuthal angle. sin �d�d� is a di�erential surface element

in spherical coordinates. �0 is the collimation angle. In terms of the distance to the collimation

place z0 and the diameter of the collimation circle on this plane �0, cos �0 = z0=
q
z2
0
+ �2

0
.

This is a separable probability distribution of the form:

d2p(�; �) = dp1(�)dp2(�) (27)

where:

dp1(�) =
sin �d�

1� cos �0
0 � � � �0 (28)

and

dp2(�) =
1

2�
d� 0 � � � 2� (29)

The CDF's in this case are:

CDF1(�) = c1(�) =
1

1� cos �0

Z �

0

sin �0d�0 =
1� cos �

1� cos �0
(30)

CDF2(�) = c2(�) =
1

2�

Z �

0

d�0 =
�

2�
(31)

Inverting gives:

cos � = 1� �1[1� �0] (32)

� = 2��2 (33)

where the �i are random numbers on the range [0; 1].

The code segment that would produce the input phase-space parameters required by

EGS looks like:

.

.

.

$RANDOMSET xi_1 ;

cos_theta = 1 - xi_1 * (1 - cos_theta_0);

theta = acos(theta) ;

sin_theta = sin(theta) ;
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$RANDOMSET xi_2 ;

phi = two_pi * xi_2;

u = sin_theta * cos(phi); "u is sin(theta)*cos(phi), x-axis direction cosine"

v = sin_theta * sin(phi); "v is sin(theta)*sin(phi), y-axis direction cosine"

w = cos_theta ; "w is cos(theta) , z-axis direction cosine"

x = z_0 * u/w;

y = z_0 * v/w;

.

.

.

In terms of the cylindrical coordinates on the collimation plane, eq. 32 becomes:

z0q
�2 + z2

0

= 1� �1

2
41� z0q

�2
0
+ z2

0

3
5 (34)

which yields a value for � on the collimation plane.

In the small angle limit, �0 �! 0, the circularly collimated parallel beam result should

be recovered. If one employs the small angle approximation, �� z0 and �� z0, eq. 34 obtains

the result of eq. 24, i.e. � = �0
p
�1.

References
[1] J.R. Ehrman, The Care and Feeding of Random Numbers, SLAC VM Notebook, Module 18, SLAC

Computing Services (1981).
[2] D.E. Knuth, The art of computer programming, Vol. II, (Addison Wesley, Reading Mass.) (1981).
[3] F. James, A Review of Pseudorandom Number Generators, CERN-Data Handling Division, Report

DD/88/22 (1988).
[4] G. Marsaglia, Random numbers fall mainly in the planes, Nat. Acad. Sci. 61 25 { 28 (1968).
[5] G. Marsaglia, A. Zaman and W.W. Tsang, Toward a Universal Random Number Generator, Statis-

tics and Probability Letters 8 35 { 39 (1990).
[6] G. Marsaglia and A. Zaman, A New Class of Random Number Generators, Annals of Applied

Probability 1 462 { 480 (1991).
[7] A.F. Bielajew and D.W.O. Rogers, Photoelectron angular distribution in the EGS4 code system,

National Research Council of Canada Report PIRS-0058 (1986).
[8] A.F. Bielajew, R. Mohan and C.S. Chui, Improved bremsstrahlung photon angular sampling in the

EGS4 code system, National Research Council of Canada Report PIRS-0203 (1989).


