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Abstract

This report is motivated by a paucity of literature describing the elementary math-

ematics involved in the modeling of geometries for ray-tracing applications such as

particle transport in Monte Carlo calculations. The general problem of solving for

the intersection point of a straight line with an arbitrary quadric surface is developed

(HOWFAR) as well as the problem of �nding the closest distance of a point to the bound-

ary of an arbitrary quadric surface (HOWNEAR). A general strategy for boundary-crossing

logic is presented which circumvents ambiguities associated with numerical precision

and end-of-step directional uncertainties (which can arise, for example, as a result of a

multiple-scattering deection angle being applied at the end of the step). The speci�c

examples of surfaces given are planes, circular cylinders, spheres and circular cones

with arbitrary orientation and position. Care is taken to develop the mathematical

equations so that they can be computed with numerical accuracy and a discussion on

the inuence of machine precision on the accuracy of results is given.
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1 Introduction

In particle ray tracing for applications such as the Monte Carlo simulation of particles being
transported through media, it is required to compute the distance along a particle's direction
at which a surface describing the geometry is intersected. In our convention, we call this
quantity HOWFAR. Part of this report is devoted to the calculation of HOWFAR for arbitrary
surfaces. Examples are provided for several quadric surfaces, in particular, for planes (which
are really linear surfaces), spheres, circular cylinders and circular cones.

Another useful quantity that is required for certain variance reduction techniques [1] and
the PRESTA electron algorithm [2, 3, 4], an accurate electron transport algorithm adapted
for the EGS4 Monte Carlo code [5], is the quantity called HOWNEAR, the minimum distance
(irrespective of direction) to any surface from the location of the initial particle position.
Part of this report is devoted to the calculation of HOWNEAR for arbitrary quadric surfaces
and for the example surfaces mentioned above. The general solution for the arbitrary quadric
surface appears to be new.

A section is devoted to the general problem of boundary crossing and how the geometry
model impacts upon it, with speci�c discussion relating to the algorithms of the EGS4 code.

The remainder of this report is devoted to the issue of accuracy performance of the algorithms
developed herein and a comparison of one alternate boundary crossing scheme.

2 Boundary crossing

Boundary crossing with the EGS4 system is provided by a well-speci�ed interface. On
entering the subroutine HOWFAR, EGS4 provides the region number, position and direction
of the particle and USTEP, the straight-line distance along the particle's direction that EGS4
proposes to transport the particle in the absence of geometry1. USTEP is generally determined
by the physics of transport in in�nite media plus any other step-size constraints that the
user may specify, for example, ESTEPE, or SMAX2. The HOWFAR routine provides EGS4 with
only two required pieces of information: 1) the new region number that the particle will go
into if it crosses a boundary and, 2) the new, shorter value for USTEP if this occurs. There is
one optional parameter, IDISC, that the user may set non-zero, if the user wants EGS4 to
terminate the particle history. This is usually employed to signal to EGS4 that the particle
has left the region of interest and need not be transported anymore.

This simple design allows EGS4 to concern itself only with the problem of transport of
particles in in�nite media and it only needs to know the composition of the medium that

1In principle, it is up to the user to demand any information from EGS4. However, this list of inputs
represents the minimum required.

2
ESTEPE and SMAX are parameters that users may specify to control electron step-size. For more informa-

tion, consult Rogers [6].
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particles are being transported in. Thus, when the new region number is communicated to
EGS4 via HOWFAR, EGS4 merely has to check in its look-up tables whether or not the medium
has changed and then takes appropriate action. This decoupling of physics and geometry
is one of EGS4's most powerful features and permits arbitrary exibility in specifying the
geometry. Users are responsible for providing the geometry and it can be simple or as
complicated as imagination will allow.

However, there is one drawback. In an \ideal" computer where oating point numbers could
be speci�ed to absolute accuracy, there would be no ambiguity3. Is the particle on a surface
or not? Is it exactly on the surface or has truncation caused an \undershoot" or round-up
caused an overshoot? The problem arises entirely from the �nite precision of oating point
numbers in computers. There are three possibilities one must consider:

undershoot The new value of USTEP does not quite reach the surface but EGS4 is made to
assume that the surface has been reached.

exact Numerically, the particle is exactly on the surface.

overshoot The new value of USTEP is slightly overestimated so that the surface is actually
crossed.

All of these possibilities occur with varying frequency during the course of a Monte Carlo
calculation. In fact, it is correct to say that if you run a geometry code through enough
examples with stochastic selection of input parameters, then everything that can happen
will happen. Therefore, it is necessary to write geometry coding that is robust enough
to handle all of these possibilities and also to be aware of the error handling that EGS4
attempts so that coding e�orts will neither be redundant nor in conict with EGS4. It has
been suggested that all geometry be coded in double or extended precision to avoid these
kinds of ambiguities. However, one must realise that double or extended precision does not
mean absolute precision. Higher precision reduces the size of the undershoot or overshoot but
does nothing to cure undershoot or overshoot ambiguities. A geometry code that survives
using single precision arithmetic will work at higher precision providing that the coding does
not make some intrinsic assumptions on precision or scale. The converse is not true. The
routines developed for this report will work for both single and higher precision and the
regions of validity for use with single precision is investigated.

EGS4 attempts to �x up ambiguities in the following fashion4: If the USTEP returned is less
than or equal to zero, the region number is set to the new region number returned by HOWFAR
(making the assumption that the user has set the region number to that region where the

3It is possible to recode geometry transport in integer arithmetic, thereby avoiding ambiguities. This
\quantisation" of space approach has its drawbacks and further discussion would take us out of the scope of
this report.

4The default behaviour is described above. The user has the ability to de�ne another scheme by use of a
\macro" substitution.
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particle position implies that it is), then the medium number is changed (if needed) and
the outer transport loop is restarted. Thus, the user is given the additional responsibility of
initiating the error correction by providing the correct region number if a particle is \lost"
and by signaling EGS4 that this happened by returning a USTEP that is less than or equal
to zero.

This error recovery is completely general assuming that the user's geometry provides zero
or slightly negative USTEP's and that the user's geometry takes advantage of the knowledge
of where the particle is supposed to be. To illustrate this, imagine for the sake of argument
that we are in region number 1 bounded by two in�nite parallel planes, P1 and P2, and that
HOWFAR is called with a USTEP large enough to escape region 1. All the di�erent possibilities
are depicted in �gure 1. In order to save time, imagine that the user has coded HOWFAR to
check planes that the particle is directed at. Therefore, only the distance to P2 is calculated
(assumed to be a forward solution), USTEP is shortened, and the next region is region number
2 bounded by the parallel planes P2 and P3. Control returns to EGS4 and the transport
step is e�ected and for electrons, the multiple scattering angle is sampled and the electron
deected. Now EGS4 thinks the particle is in region 2. HOWFAR is called. If the particle is
directed at P3 and P2 is never checked, then there will be no ambiguity irrespective of an
overshoot, undershoot, or exact transport to the surface on the previous step. A di�culty
can arise for electrons if multiple scattering deects the particle back towards P2. In the case
of an overshoot on the previous step there is no problem as USTEP will just be set to a small
number and a small transport step will take place on the next step. However, in the case of
an undershoot or exact transport to the surface, a di�culty does arise. USTEP will be set to
zero or some small negative number and HOWFAR will assume that the particle will re-enter
region number 1. Thus, the elementary �x-up e�ected by EGS4 works! It is incumbent upon
the user to generate geometry code that handles these ambiguities and make use of EGS4's
error handling of the situation.

The following strategy will be adopted: The HOWFAR routines are expected to know whether
or not a particle is inside or outside a surface irrespective of the numerics implied by the
position of the particle with respect to the surface. If the geometry routine detects that a
particle is not in the region where it thinks it is (presumably by virtue of an undershoot),
then it is assumed that this is due to numerical inaccuracy. If the assumptions of where
a particle is and the numerical calculation of its position conict the following strategy is
employed: If the particle is still headed in the direction of the surface, then this surface (at
least the smallest solution to it) is ignored, as if the particle had penetrated the surface. If
the particle is headed away from the surface a zero solution is provided and the surface is
assumed to be crossed again. This idea has been published previously [7] although similar
logic has been employed since 1978 [8] with the release of the EGS3 code [9].

The geometry code then carries on using the HOWFAR assumptions regarding the position
of the particle. By way of example, imagine that an undershoot to a spherical surface has
occurred. The computer logic assumes that the particle is inside the sphere but the numerics
dictate that it is outside. Since HOWFAR knows where the particle should be, it maymake use of
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Region 1 Region 2

undershoot

exact

overshoot

undershoot

exact

overshoot

P1

P1

P2

P2

P3

P3

Figure 1: Boundary crossing of an electron across plane P2. There are six possibilities
corresponding to undershoot, exact surface position, overshoot with either forward scatter
or backscatter.
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this information to obtain the unambiguous solution. If the particle is directed outside of the
sphere, the geometry routine returns a zero USTEP and changes the region to that outside the
sphere, thereby minimizing the e�ect of the inaccuracy. Similarly, if the particle is directed
at the sphere, the USTEP solution is given to the far side of the sphere and a region changed
signaled. Note that the distance from the present position of the particle to the far side of
the sphere is computed, including the amount of undershoot. Thus, the undershoots do not
accumulate and cause further problems for subsequent transport steps. This procedure is
used for all surface types and the examples to follow give further clari�cation.

3 General solution for an arbitrary quadric

Borrowing from the notation of Olmsted [10], an arbitrary quadric surface in 3(x,y,z)-space5

can be represented by:

f(~x) =
3X

i;j=0

aijxixj = 0: (1)

The aij's are arbitrary constants and the 4-vector xi has components (1; x; y; z). The zeroth
component is unity by de�nition allowing a very compact representation and aij is symmetric
with respect to the interchange of i and j, that is aij = aji. Equation 1 is very general
and encompasses a wide variety of possibilities including solitary planes (e.g. only a0i non-
zero), intersecting planes (e.g. only a11 and a22 non-zero), cylinders (circular, elliptical,
parabolic and hyperbolic), spheres, spheroids and ellipsoids, cones (circular and elliptical),
hyperboloids of one and two sheets and elliptic and hyperbolic paraboloids. These surfaces
can be combined to make geometrical objects of arbitrary complexity and are extremely
useful in Monte Carlo modeling of physical objects.

Despite having apparently 10 independent constants, eq. 1 represents only 18 independent
surfaces (including the simple plane), unique after a translation and rotation to standard
position. In fact the three cross terms (aij for i 6= j and i; j � 1) can be eliminated by
rotation. The resultant equation then only involves terms like x2i and xi. In addition,
providing that a given variable's quadratic constant is non-zero, the linear terms can be
eliminated by a translation. The result is that there are only two generic forms:

f(~x) =
3X

i=1

aix
2

i + c = 0; (2)

and

f(~x) =
2X

i=1

aix
2

i + bx3 = 0: (3)

Equations 2 and 3 describe only 10 distinct possibilities with real solutions.

5The only variance with Olmsted's notation is that the 4th component is labelled as the 0th component
in this work.
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1. ellipsoids: a2
1
x2
1
+ a2

2
x2
2
+ a2

3
x2
3
� c2 = 0.

2. cones: a2
1
x2
1
+ a2

2
x2
2
� a2

3
x2
3
= 0.

3. cylinders: a2
1
x2
1
+ a2

2
x2
2
� c2 = 0.

4. hyperboloids of one sheet: a2
1
x2
1
+ a2

2
x2
2
� a2

3
x2
3
� c2 = 0.

5. hyperboloids of two sheets: a2
1
x2
1
+ a2

2
x2
2
� a2

3
x2
3
+ c2 = 0.

6. elliptic paraboloids: a2
1
x2
1
+ a2

2
x2
2
+ a3x3 = 0.

7. hyperbolic paraboloids: a2
1
x2
1
� a2

2
x2
2
+ a3x3 = 0.

8. hyperbolic cylinders: a2
1
x2
1
� a2

2
x2
2
+ c2 = 0.

9. parabolic cylinders: a2
1
x2
1
+ a3x3 = 0.

10. simple planes: a3x3 + c = 0.

The �rst nine of these are shown6 in �g. 2. (The magnitude of the above constants were all
chosen to be unity for the purposes of display. Consequently, the �rst six of these surfaces
shown exhibit at least one axis of rotational symmetry.) There are other imaginary surfaces
(e.g. imaginary ellipsoids a2

1
x2
1
+ a2

2
x2
2
+ a2

3
x2
3
+ c2 = 0) that we will not consider nor will

we consider quadrics that can be made up of two independent planes in various orientations
(e.g. intersection planes a2

1
x2
1
�a2

2
x2
2
= 0, parallel planes a2

1
x2
1
� c2 = 0, and coincident planes

a2
1
x2
1
= 0).

The HOWFAR solutions can be obtained using the constants speci�ed in an arbitrary way.
The solution for HOWNEAR is more involved and explicit analytic forms are given only for the
special cases in this report. However, the canonical forms expressed by eqs. 2 and 3 are used
later to discuss the general HOWNEAR solution but not to determine the HOWNEAR solutions
explicitly.

For more information on the reduction to canonical form, the reader is encouraged to read
Olmsted's book [10]. Olmsted also gives the classi�cation of the surfaces and lists the entire
set of 17 canonical quadric forms.

3.1 HOWFAR to an arbitrary quadric surface?

A geometric particle trajectory is represented by a line in 3-space and is most conveniently
expressed in terms of a parametric equation:

~x = ~p + ~us (4)

6These �gures were produced using a programme called QUADPLOT [11] that was developed in associ-
ation with this study. QUADPLOT also displays HOWFAR and HOWNEAR solutions and includes an algorithm
for quadric surface classi�cation from arbitrary user-input parameters.
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Sphere Circular Cone Circular Cylinder

Circular Hyperboloid of One Sheet Circular Hyperboloid of Two Sheets Circular Paraboloid

Hyperbolic Paraboloid Hyperbolic Cylinder Parabolic Cylinder

Figure 2: The nine real non-planar quadric surfaces.
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where ~x is the vector notation for (x; y; z): the position along the line, ~u is the vector
notation for the direction of the line (u; v; w) and s is the geometric path-length from the
starting position of the particle, ~p = (px; py; pz). The components (u; v; w) are the direction
cosines of the line along the (x; y; z)-axes and by convention are normalised so that j~uj =p
u2 + v2 + w2 = 1. This normalisation permits an identi�cation of s as the distance along

the line from the original position ~p. A positive value of s expresses a distance along the
direction that the particle is going (forward trajectory) and a negative value is associated
with a distance that the particle came from (backward trajectory). Thus, negative solutions
found for s below are rejected.

In Monte Carlo particle transport calculations as well as ray-tracing algorithms a common
problem is to �nd the distance a particle has to travel in order to intersect a surface. This
is done by substituting for ~x from eq. 4 in eq. 1 to give:

s2

0
@ 3X

i;j=0

aijuiuj

1
A + 2s

0
@ 3X

i;j=0

aijpiuj

1
A+

0
@ 3X

i;j=0

aijpipj

1
A = 0; (5)

where we have adopted the convention that u0 = 0 and p0 = 1. This is a quadratic equation
in s of the form A(~u)s2 + 2B(~u; ~p)s + C(~p) = 0 where A(~u) =

P
3

i;j=0 aijuiuj, B(~u; ~p) =P
3

i;j=0 aijpiuj and C(~p) =
P

3

i;j=0 aijpipj .

3.1.1 Interpretation of the quadratic constants

The constant C(~p) is identically zero when ~p is on the surface. When ~p is not on the surface,
the sign of C(~p) can be interrogated to see if the particle is inside or outside. There is some
arbitrariness in the de�nition of what is \inside" or \outside". A sphere with radius R, for
example, has the form ~p2 � R2 = 0 and in this case C(~p) > 0 when j~pj > R. So, for this
example, C(~p) is positive when ~p is outside and negative when inside. However, the same
sphere is de�ned by R2 � ~p2 = 0 giving opposite interpretation for the signs of C(~p) for
points inside and outside. It is best to adopt a constant interpretation and be aware that
two points on opposite sides of the surface in the sense that a line joining them intersects
the surface only once, have di�erent signs.

For planes and most of the other surfaces, \inside" and \outside" are arbitrary since multi-
plying eq. 2 or eq. 3 by a minus sign leaves the surface intact. However, there is one natural
interpretation provided by the calculation of the normal to the surface, rf(~p), where ~p is
a point on the surface, i.e. C(~p) = 0. In the way they were de�ned, rf(~p) points to the
\outside" region which can be de�ned as follows: If more than one line can be drawn through
a point such that the surface is not intersected in either the forward or backward direction,
then this point is on the outside. If at most only one such line exists, then the point is on the
\inside". This de�nes the inside and outside in a unique and natural way (inside a sphere, for
example). There are three exceptions to this rule, the simple plane, the hyperboloid of one
sheet and the hyperbolic paraboloid. In their standard forms given below eq. 3, the outside
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or inside of a plane is completely arbitrary, the outside of a hyperbolic paraboloid contains
the positive x3-axis and the inside of the hyperboloid of one sheet contains the x3-axis which
also seems to be a \natural" choice.

The constant B(~u; ~p) is related to the inner product of the particle's direction ~u with
the normal to the surface at a point ~p when ~p is on the surface. Speci�cally, B(~u; ~p) =P

3

i;j=0 aijpiuj =
1

2
~u �rf(~p). When ~p is on the surface rf(~p) is its normal there. This can be

exploited to decide to which side of a surface a particle is going if it happens to be on the sur-
face and is pointed in some direction. Imagine a particle on the surface at point ~p with some
direction ~u and consider an in�nitesimal step �. The sign of C(~p+ ~u�) = 2�B(~u; ~p) +O(�2)
will have the sign of B(~u; ~p). If B(~u; ~p) = 0 for ~p on the surface, it means that the particle
is moving in the tangent plane to the surface at that point.

When a particle is on the surface, the constant A(~u) can be related to the curvature of the
surface. It can be shown7 that the radius of curvature at the point ~p on the surface in the
plane containing the normal to the surface there, rf(~p) and the direction of the particle on
the surface, ~u, is given by jrf(~p)j=jA(~u)j. There is one case among the surfaces we consider
where both jrf(~p)j and jA(~u)j vanish simultaneously and that is of a point on the vertex of
a cone. In this anomalous case we can take the radius of curvature to be zero.

A(~u) vanishes when the particle is travelling parallel to a \ruled line" of the surface, whether
on the surface or not. A ruled line is a line that lies entirely on the surface. Quadrics with
one or more vanishing quadratic constants (one of the ai's in eq. 2 or 3) always possess ruled
lines, as do planes, cones, hyperboloids of one sheet and hyperbolic paraboloids. The constant
A(~u) can also vanish for a particle having a trajectory that is parallel to an asymptote of a
hyperboloid, or pointed at the \nose" of a paraboloid or in the plane perpendicular to it.

A(~u) can be used to decide where a particle is in relation to a surface in the case that B(~u; ~p)
and C(~p) vanish, that is when the particle is on the surface and in the plane tangent to it at
that point. In this case an in�nitesimal transport C(~p+ ~u�) = A(~u)�2 will have the sign of
A(~u). So, if (A(~u) > 0, B(~u; ~p) = 0, C(~p) = 0) the particle is headed outside, if (A(~u) < 0,
B(~u; ~p) = 0, C(~p) = 0) the particle is headed inside, and if (A(~u) = 0, B(~u; ~p) = 0, C(~p) = 0)
the particle is on the surface and directed along a ruling and there is no intercept in this
case.

For planar surfaces (A(~u) = 0 always in this case) there is always a solution for s unless
the particle's trajectory is exactly parallel to the plane. If the solution for s is negative, it
is rejected since it not a forward solution. (Solutions that go back in time are usually not
interesting except for adjoint problems.) If the solution for s is positive, then it represents a

7The way to do this is consider a particle at point ~p on the surface with an initial direction ~u tangent to
the surface and moving in the plane de�ned by the normal orthogonal vectors ~u and rf(~p)=jrf(~p)j. The
trajectory of the particle is then described by f(~p + ~usu + (rf(~p)=jrf(~p)j)sn) = 0 where su and sn are
projections of the particle's position vector on the ~u and rf(~p)=jrf(~p)j axes, respectively. This yields the
equation of a conic. The radius of curvature is then obtained by the standard equation for motion in a plane,
Rc = f[1 + (dsn=dsu)

2]3=2g=jd2sn=ds
2

uj.
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solution along the forward trajectory of the particle.

For the non-planar surfaces, the equation for s is quadratic. In general, when B(~u; ~p)2 �
A(~u)C(~p) < 0, there are no solutions to the quadratic equation, which means that the
particle's trajectory misses the surface. If the surface in question is one of the seven with
the intuitive inside-outside interpretation, then one might guess that one does not have to
test for the positiveness of B(~u; ~p)2 � A(~u)C(~p) when the particle is inside, thereby saving
computer time. However, there are conditions where the limited numerical precision causes
B(~u; ~p)2�A(~u)C(~p) to be negative even when the particle is inside one of the natural surfaces.
In this case it can be shown that the particle's trajectory is very close to that of being along
a ruling and very close to the surface (A(~u) � 0, B(~u; ~p) � 0, C(~p) � 0). It is consistent,
therefore, to assume that there is no solution in this case even if the trajectory is not exactly
on the surface or exactly tangent to it. In this case the particle is assumed to travel along
the ruling until it hits another surface in the problem or an interaction e�ects a change of
direction whereupon a decision can be made whether the particle is headed inside or outside
the surface.

Employing the error recovery strategy of the previous section, a general algorithm for an
arbitrary quadric surface may be sketched:

IF B2 �AC < 0 Particle does not intersect the surface.

ELSEIF HOWFAR thinks the particle is outside

IF B � 0

IF A � 0 No solution.

ELSE s = �(B +
p
B2 �AC=A).

ELSE s = max(0; C=[
p
B2 �AC �B]).

ELSE HOWFAR thinks the particle is inside

IF B � 0

IF A > 0 s = (
p
B2 �AC �B)=A.

ELSE No solution.

ELSE s = max(0;�C=[
p
B2 �AC +B]).

All quadric surfaces are special cases that can be solved by this algorithm. Only the constants
A;B;C need to be speci�ed for any case. Indeed, this algorithm will work for planes as well
but the simplicity of planes motivates the construction of a more e�cient algorithm speci�c
to planes only.
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3.2 HOWNEAR to an arbitrary quadric surface?

The problem of �nding the minimum distance from a given point in 3-space (starting point
of a particle trajectory) to any point on a quadratic surface (HOWNEAR) is tantamount to
�nding the minimum perpendicular distance to the surface. This is because it can be shown

that the extrema of the distances to any continuous surface (a quadratic surface is a special
case of a generalised continuous surface) from a given point lies along the normal to the
surface at that surface point. Therefore, it remains to decide whether or not the extremum
is a maximum or a minimum.

For this discussion it is assumed that the quadric surface is in one of its generic forms
expressed by eqs. 2 or 3. The distance squared, d2 from the point ~p to the surface is given
by:

d2 =
3X

i=0

(xi � pi)
2; (6)

subject to the constraint expressed by eqs. 2 or 3. This can be solved by the method of
Lagrange multipliers.

Examining the case where the surface is of the non-parabolic type, taking derivatives of
eqs. 6 and 2 gives the condition for extrema:

xi =
pi

1 + �ai

; i = 1; 2; 3: (7)

where � is the Lagrange multiplier. Inserting this into eqs. 2 yields a solution to the Lagrange
multiplier:

3X
i=1

ai

�
pi

1 + �ai

�
2

+ c = 0: (8)

Depending upon the values of the constants ai and c, several cases can be enumerated.

Case I c 6= 0, ai 6= 0, ai's all distinct These are ellipsoids, and elliptic hyperboloids of one
and two sheets. This yields a 6th order solution for �.

Case II c 6= 0, ai 6= 0, two ai's are the same This describes a surface with azimuthal sym-
metry about one axis and includes spheroids and circular hyperboloids of one and two
sheets. This solution is 4th order.

Case III c 6= 0, ai 6= 0, all ai are the same This is a sphere. The solution is 2nd order.

Case IV c 6= 0, one ai = 0, the others are di�erent This is an elliptic or hyperbolic cylinder.
The solution is 4th order.

Case V c 6= 0, one ai = 0, the others are the same This is an circular cylinder. The solu-
tion is 2nd order.
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Case VI c 6= 0, two ai's are zero This represents parallel planes. The solution is 2nd order.

Case VII c = 0, ai 6= 0, ai's all distinct This is an elliptic cone. The solution is 4th order.

Case VIII c = 0, ai 6= 0, two ai's are the same This is a circular cone. The solution is 2nd

order.

Case IX c = 0, one ai = 0, ai's all distinct This case corresponds to two intersecting planes.
There are two solutions.

Case X c = 0, two ai's are zero This case corresponds to a single plane. There is one solu-
tion.

In the case that the surface is of the parabolic type, taking the derivatives gives:

xi =
pi

1 + �ai

; i = 1; 2; x3 = p3 �
�b

2
: (9)

Inserting this into eqs. 3 yields a solution to the Lagrange multiplier:

2X
i=1

ai

�
pi

1 + �ai

�
2

+ b

 
p3 � �b

2

!
= 0: (10)

Depending upon the values of the constants ai, several cases can be enumerated.

Case I ai 6= 0, a1 6= a2 This is an elliptic or hyperbolic paraboloid and yields a 5th order
solution for �.

Case II a1 = a2 6= 0 This describes a paraboloid with azimuthal symmetry about one axis.
This solution is 3rd order.

Case III a1 = 0, a2 6= 0 This describes a parabolic cylinder. The solution is 3rd order.

Case IV a1 = a2 = 0 This describes a solitary plane. There is only one solution.

In the most di�cult cases one must resort to �nding roots to 5th or 6th-order polynomials.
It has been proven that there is no analytic technique for accomplishing this and one must
resort to numerical methods. Analytic techniques exist for 4th-order and lower. It ought to
be remarked that some of the solutions need not be real but in the case of surfaces of the
hyperbolic type expressed by eq. 2 there must be at least two real solutions and in the case
of parabolic type expressed by eq. 3, there must be at least one. A numerical search routine
must be able to search for all the roots, and take the minimum among the real ones. In
general, this is not a simple task and may be time consuming. For the purpose of this report
we now consider only 2nd-order and less and this restricts us to planes, spheres, circular
cylinders and circular cones.
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4 Solutions for simple surfaces

4.1 Planes

The general equation for a plane of arbitrary orientation is:

~n � (~x� ~P ) = 0 (11)

where ~n is the unit normal of the plane and ~P is any point on the surface of the plane. Note
the use of the inner product, ~n � ~x � nxx+ nyy + nzz.

4.1.1 HOWFAR?

Inserting eq. 4 into eq. 11 and solving for s gives:

s = �~n � (~p �
~P )

~n � ~u (12)

We remark that there is no solution (s = 1) when the particle direction is perpendicular
to the normal of the plan (~n � ~u = 0). This is the solution of a particle travelling parallel to
a plane and never hitting it. Only positive solutions for s are acceptable and this depends
upon whether or not the particle is travelling towards the plane.

Adopting the convention that a particle is considered to be outside the plane of it is on the
side that the unit normal, ~n, is pointing, we enumerate the possibilities:

Case I ~n � ~u = 0
Trajectory is parallel to the plane, no solution

Case II ~n � (~p� ~P ) � 0 and HOWFAR assumes outside

1. If ~n � ~u < 0, s = �~n � (~p � ~P )=~n � ~u
2. Elseif ~n � ~u > 0, no solution

Case III ~n � (~p � ~P ) � 0 and HOWFAR assumes inside

1. If ~n � ~u > 0, s = �~n � (~p � ~P )=~n � ~u
2. Elseif ~n � ~u < 0, no solution

Case IV ~n � (~p� ~P ) < 0 but HOWFAR assumes outside

1. If ~n � ~u < 0, s = 0 e�ecting a region change

2. Elseif ~n � ~u > 0, no solution
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Case V ~n � (~p� ~P ) > 0 but HOWFAR assumes inside

1. If ~n � ~u > 0, s = 0 e�ecting a region change

2. Elseif ~n � ~u < 0, no solution

The case of a parallel trajectory is handled by Case I. The two \normal" conditions in
Case II and Case III handle the eventuality where the particle is exactly on the plane,
~n�(~p� ~P ) = 0. Case IV and Case V handle the anomalies. In the case of an undershoot and
backscatter out of the region where the HOWFAR thinks the particle is, then a zero distance is
returned so that EGS may switch to the correct medium. If the case of an undershoot and
forward scatter, no solution is given allowing other surface in the geometry to determine the
intersection. Note that no correction is made for the undershoot distance and this will be
included in the next transport step. Therefore, numerical inaccuracies are not allowed to
accumulate.

4.1.2 HOWNEAR?

Using the method of Lagrange multipliers discussed earlier, ~x has the solution:

~x = ~p � �~n

2
: (13)

Substituting this into equation for the plane, eq. 12 solves for the Lagrange multiplier,

� = 2~n � (~p � ~P ); (14)

and yields a solution for the closest distance:

d = j~n � (~p � ~P )j: (15)

4.2 Spheres

The general equation for a sphere is:

(~x� ~X)2 �R2 = (x�X)2 + (y � Y )2 + (z � Z)2 �R2 = 0 (16)

where ~X � (X;Y;Z) is the location of the center of the sphere and R is its radius.

4.2.1 HOWFAR?

Substituting the equation for particle trajectory, eq. 4, into the above yields a quadratic
equation of the form As2 + 2Bs+ C = 0, where the quadratic constants, A, B and C, are:
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A = 1

B = ~u � (~p� ~X)

= u(px �X) + v(py � Y ) + w(pz � Z)

C = (~p � ~X)2 �R2

= (px �X)2 + (py � Y )2 + (pz � Z)2 �R2

These constants may be employed in the general quadric surface algorithm for HOWFAR de-
scribed previously.

4.2.2 HOWNEAR?

Using the method of Lagrange multipliers, ~x has the solution:

~x =
~p + �~P

1 + �
: (17)

Substituting this into equation for the sphere, eq. 16 solves for the Lagrange multiplier in
terms of its two roots,

� =
�R� j~p� ~P j

R
; (18)

and yields a solution for the closest distance:

d = jR � j~p � ~P jjmin = jR� j~p � ~P jj: (19)

Equivalently, if ~p is outside the sphere,

d = j~p� ~P j �R; (20)

and if ~p is inside the sphere,
d = R� j~p � ~P j: (21)

The other solution for d corresponds to the other extremum, the distance to the far side of
the sphere.

4.3 Circular Cylinders

The general equation for a circular cylinder is:

(~x� ~P )2 � [(~x� ~P ) � ~U ]2 �R2 = 0 (22)

where ~P � (Px; Py; Pz) is any �xed point on the axis of the cylinder, ~U is the direction vector
of the axis of the cylinder, and R is its radius.
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4.3.1 HOWFAR?

Substituting the equation for particle trajectory, eq. 4, into the above yields a quadratic
equation of the form As2 + 2Bs+ C = 0, where the quadratic constants, A, B and C, are:

A = 1� (~u � ~U)2
B = ~u � f(~p� ~P )� ~U [(~p� ~P ) � ~U ]g
C = (~p� ~P )2 � [(~p� ~P ) � ~U ]2 �R2

These constants may be employed in the general quadric surface algorithm for HOWFAR de-
scribed previously.

4.3.2 HOWNEAR?

Using the method of Lagrange multipliers, the component of ~x parallel to ~U has the solution:

(~x� ~P )� ~U [~U � (~x� ~P )] =
(~p � ~P )� ~U [~U � (~p� ~P )]

1 + �
: (23)

Substituting this into equation for the cylinder, eq. 22 solves for the Lagrange multiplier in
terms of its two roots,

� =
�R �

q
(~p � ~P )2 � [~U � (~p � ~P )]2

R
; (24)

and yields a solution for the closest distance:

d =
����R �

q
(~p � ~P )2 � [~U � (~p � ~P )]2

����
min

=
����R �

q
(~p � ~P )2 � [~U � (~p � ~P )]2

���� : (25)

Equivalently, if ~p is outside the cylinder,

d =
q
(~p� ~P )2 � [~U � (~p� ~P )]2 �R; (26)

and if ~p is inside the cylinder,

d = R �
q
(~p � ~P )2 � [~U � (~p � ~P )]2: (27)

The other solution for d corresponds to the other extremum, the distance to the far side of
the cylinder.
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4.4 Circular Cones

In standard quadric form, the general equation for a cone is:

cos2�f(~x� ~P )� ~U [(~x� ~P ) � ~U ]g2 � sin2�[(~x� ~P ) � ~U ]2 = 0 (28)

This form, depicted in �g. 2, is actually two cones on the same axis situated point-to-point.
To avoid ambiguities, we adopt the convention that 0 < � < �=2 and use ~U to orient the
cone. (The special case, � = �=2, corresponds to the quadric surface for coincident planes,
while the special case, � = 0 corresponds to a zero-radius cylinder.) Both cones are to
be regarded as valid surfaces for which HOWFAR and HOWNEAR are to be calculated. If an
application requires only one cone, then it will be assumed that the other \reection" cone
has been eliminated through the use of another surface that isolates only one of the cones.

4.4.1 HOWFAR?

Substituting the equation for particle trajectory, eq. 4, into the above yields a quadratic
equation of the form As2 + 2Bs+ C = 0, where the quadratic constants, A, B and C, are:

A = cos2�[~u� ~U(~u � ~U)]2 � sin2�(~u � ~U)2
B = cos2�~u � f(~p� ~P )� ~U [(~p� ~P ) � ~U ]� sin2�~U [(~p� ~P ) � ~U ]g
C = cos2�f(~p � ~P )� ~U [(~p� ~P ) � ~U ]g2 � sin2�[(~p� ~P ) � ~U ]2

These constants may be employed in the general quadric surface algorithm for HOWFAR de-
scribed previously.

4.4.2 HOWNEAR?

Using the method of Lagrange multipliers, ~x has the following solution in terms of compo-
nents perpendicular and parallel to ~U :

(~x� ~P )� ~U [~U � (~x� ~P )] =
(~p � ~P )� ~U [~U � (~p� ~P )]

1 + �
: (29)

and

[~U � (~x� ~P )] =
[~U � (~p� ~P )]

1� � tan2�
: (30)

Substituting this into equation for the cone, eq. 28 solves for the Lagrange multiplier in
terms of its two roots,

� =
� tan�j~U � (~p� ~P )j �

q
(~p� ~P )2 � [~U � (~p� ~P )]2

� tan�j~U � (~p� ~P )j � tan2�
q
(~p� ~P )2 � [~U � (~p� ~P )]2

; (31)
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where the � sign in the numerator are coupled, i.e. one solution for � has both positive and
the other both negative. This yields a solution for the closest distance:

d =
����cos�

q
(~p� ~P )2 � [~U � (~p� ~P )]2 � ~U � (~p� ~P ) sin �

����
min

: (32)

5 Performance of the geometry routines

To test the performance of the geometry routines a test code was written to simulate particle
transport from an arbitrary point to a surface. The \photon" model used always retained the
initial direction vector while the \electron" model picked a random direction after each non-
zero transport. Record was kept of the initial and subsequent \undershoots", \overshoots"
and exact hits. Particles were tracked until they escaped to in�nity. Also tallied was the
average and maximum HOWNEAR after transport to the surface and the code could be run
in either single or double precision. The numerical calculations performed in this section
were done on a Silicon Graphics Indy workstation with a MIPS R4400 CPU Processor
(chip revision 5.0) and a MIPS 4010 Floating Point Chip (chip revision 0.0) using IRIX
5.2 and Fortran 77 Version 4.0.1. The numerical calculations should be similar but not
necessarily identical to those done with other computers, processors, operating systems or
Fortran compilers. For each trial, 105 iterations were performed. Thus, any scatter in the
data us related to the characteristics or \graininess" of the numerical representation rather
than a reection of poor statistics that could be made better by running more iterations.

5.1 Single vs. double precision

For quadric surfaces one can expect numerical problems when the distance from the surface
is very large in comparison with a measure of the radius of curvature of the surface in the
vicinity of the intersection. Using the sphere as an example, the quadratic parameter is
C = (~p � ~X)2 � R2 and thus when R2, the radius squared of the sphere, becomes much

smaller than the distance squared (~p � ~X)2, the mathematics may not be able to resolve
the sphere. For single precision arithmetic this threshold is about 10�7 while for double
precision about 10�16. Thus, if one is using single precision arithmetic, one can expect
di�culties in the neighbourhood of j~p � ~Xj=R > 3000, depending on the architecture. This
may be important for some applications.

To illustrate this point, we consider the spherical geometry where a sphere of unit radius is
centered at the origin. In �g. 3 is shown the intersection with the surface with the initial and
subsequent intersection points on the sphere with rotations provided to render the drawings
in two dimensions. The \electron" model was employed. Particles from distances 1000R,
2000R, 4096R, 4097R, were directed at the sphere from the left. The initial undershoots
are depicted as triangles pointed to the left, initial overshoots as triangles pointed to the
right and exact hits for initial or subsequent hits as circles, which also serve to delineate
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d = 1000 R d = 2000 R

d = 4096 R d = 4097 R

Figure 3: Particles from distances 1000R, 2000R, 4096R, 4097R, were directed at the sphere
from the left. The initial undershoots are depicted as triangles pointed to the left, initial
overshoots as triangles pointed to the right and exact hits for initial or subsequent hits as
circles. The calculations were done in single precision arithmetic.
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the sphere. The calculations were done in single precision arithmetic. The e�ects of single
precision on this con�guration are just barely discernible at d = 1000R. \Quantisation"
of the initial undershoots and overshoots is evident by d = 2000R. By d � 4000R the
mathematics completely loses resolution of the sphere. For very large d all the initial \hits"
are placed on the plane normal to the vector from the center of the sphere to the source.
Note the large di�erence between the d = 4096R and the d = 4097R, an artefact produced
by �nite-precision mathematics. A double precision calculation only exhibits this behaviour
at about 108R.

A more quantitative demonstration is shown in �g. 4 where the mean and average HOWNEAR
for this example are given for the initial \hit" on the sphere. The single and double preci-
sion calculations are contrasted. If one considered a 1% maximum undershoot or overshoot
acceptable, then the single precision calculation is acceptable so long as the source of par-
ticles is within about 300R of the sphere. The double precision calculation performs much
better but one has to ask whether the double precision overhead which can be signi�cant
on some 32-bit machines is worth it, particularly considering that the geometry routines are
used intensively during typical applications. On 64-bit architectures, where double precision
comes \for free", one ought to employ double precision universally.

However, the use of higher precision does not eliminate nor change the characteristics of
the undershoots or overshoots. This can be seen in �g. 5 which depicts the undershoot,
overshoot and exact hit frequency vs. initial distance from the center of the sphere for initial
hits and subsequent hits employing the \electron" model. Both single precision and double
precision calculations are shown for both the initial hits and subsequent hits after direction
randomisation. For the computer and software architecture tested, when the particle incident
from within the sphere both single and double precision initial undershoot frequency is
about 20%, the initial overshoot frequency is about 10% and the exact hits comprise the
approximately 70%. When the particle incident from outside of the sphere both single and
double precision initial undershoot and overshoot frequencies are about 50%. As the initial
point gets farther from the sphere the single precision overshoot and undershoot results
diverge in the vicinity of the numerical instability described previously. The subsequent hit
data is relatively at, showing little \history" of the initial overshoot or undershoot.

6 Alternate boundary crossing schemes

An alternative boundary-crossing scheme can be constructed by adding a small bit of extra
transport to guarantee surface penetration. Combinatorial geometry packages that do not
keep track of a particle's assumed position with respect to a surface require such a scheme to
attempt to eliminate problematic undershoots. A similar scheme is the concept of \fuzzy"
surfaces that \shrink" by a small amount when a particle is directed at it and \swell" after
penetration.
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Figure 4: Mean and average HOWNEAR for this example are given for the initial \hit" on the
sphere contrasting the performance of single and double precision arithmetic.
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precision and double precision calculations are shown.
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To study this, consider the e�ect of extra transport on the initial hits on a sphere. A single
precision calculation is shown in �g. 6. In this case the \extra transport" was � = 2:4�10�4R.
In this case one notes that the overshoot frequency is 100% until the initial point is a distance
of about 20R. This threshold can be changed by choosing a di�erent value for �. In a scheme
where undershoots are problematic one notes that the price to be paid for having to invoke
extra transport is poorer performance in HOWNEAR after the step to the surface, as indicated
in the bottom half of �g. 6.

The double precision calculation is shown in �g. 7 which employed � = 7:5 � 10�9R. For
this case the undershoot frequency has a threshold of about 300R. HOWNEAR after transport
is again much larger although values of about 10�8R are acceptable for many calculations.

7 Conclusions

A particle tracking scheme that keeps track of the assumed position with respect to a surface
was discussed. By employing this logic one can optimise the accuracy of the �nal position
with respect to the surface. One does not need \fuzzy" boundaries or \extra" small transport
distances to formulate a robust tracking algorithm.

Unless all transport is to take place in the vicinity of a given surface, it is best to use double
precision.

A universal algorithm for all quadric surfaces was given. The HOWFAR intercept to any quadric
surface can be calculated by determining the quadratic constants and then substituting them
into the universal algorithm.

The HOWNEAR solution for an arbitrary quadric requires the determination of the zeros of a 5th

or 6th polynomial. Symmetries reduce the order of the polynomial. Spheres, circular cones
and circular cylinders are second order while a plane is �rst order. Analytic expressions were
given for these surfaces.
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of the sphere for initial hits obtained by added a small quantity to the transport step in a
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