
NRC-CNRCNRC-CNRC

Elementary Mortran3

Walter R. Nelson
Stanford Linear Accelerator Center

Elementary Mortran32

NRC-CNRCNRC-CNRC

Introductory Remarks

� EGS runs most effectively in the language in which it is
written – Mortran3

� Mortran is simply a string processor that produces Fortran77
code

� Users should learn Mortran in order to take advantage of the
more advanced features of EGSnrc

� EGSnrc can be run directly in Fortran77, but we don’t advise
doing it this way. Mortran is easy to learn…and it’s fun

Elementary Mortran33

NRC-CNRCNRC-CNRC

What is Mortran?

� The term Mortran has several meanings:

– A structured language

– A translator for that language

– A macro processor

� The macro-processor facility of Mortran will be discussed in
a subsequent lecture

� In this lecture, we will concentrate only on those things one
really needs to know in order to create a User Code for
EGSnrc

Elementary Mortran34

NRC-CNRCNRC-CNRC

Mortran as a String Processor

� The Mortran string processor is an ANSI standard Fortran77
code (mortran3.f)

� The job of the user is to write a User Code that gets
“sandwiched” within a set of EGSnrc files

egsnrc.macros + User Code + egsnrc.mortran

� This package then gets read in and string processed by
mortran3.f using a set of conversion rules

Elementary Mortran35

NRC-CNRCNRC-CNRC

… a String Processor

� The output is a large Fortran (.f) file consisting of the User
Code plus the necessary parts of EGSnrc itself

� This large program is then compiled, linked and executed
like any other Fortran code

� A script is generally employed to facilitate putting together
the “sandwich”, creating the executable and running the job

Elementary Mortran36

NRC-CNRCNRC-CNRC

Mortran as a Structured Language

� The primary Mortran3 reference is:
A. J. Cook, The Mortran3 User�s Guide,
SLAC Internal Report CGTM-209 (1983)

which is too difficult for the beginner (so we won’t use it)

� A more useful Mortran manual entitled

EGS User Guide to MORTRAN3

is provided in Section 7 of the EGSnrc manual (PIRS-701)

� This lecture will not cover all the rules of Mortran, but will
simply provide enough examples to illustrate the basics

Elementary Mortran37

NRC-CNRCNRC-CNRC

… a Structured Language

� In the examples that follow we will interlace commentary to
explain various features. Here are the rules for this:

– Comments are placed inside of double quotes
(e.g., “string”)

– Comments may be inserted anywhere, except in character
strings

– Also, avoid placing them inside macros until you become
an EGSpert

Elementary Mortran38

NRC-CNRCNRC-CNRC

Example 1

XSUM=0.0; X2SUM=0.0;

DO I=1,10 ["Start of DO-loop"

X=I;

XSUM=XSUM + X;

X2SUM=X2SUM + X*X;

] "End of DO-loop"

OUTPUT XSUM,X2SUM; (' XSUM=',E10.3,5X,'X2SUM=',E10.3);

STOP; END;

%% "Signals end of Mortran3 input"

� Statements terminate with a semicolon (;)

� More than one statement on a line

� Statements start in any column

– DO-loop is simplified…just use brackets: [and]

– No need for statement number or CONTINUE statement

� OUTPUT is easy way to say WRITE(6, etc.)

…with FORMAT statement following immediately

Elementary Mortran39

NRC-CNRCNRC-CNRC

Example 1 (cont.)

Mortran Code:
XSUM=0.0; X2SUM=0.0;

DO I=1,10 ["Start of DO-loop"

X=I;

XSUM=XSUM + X;

X2SUM=X2SUM + X*X;

] "End of DO-loop"

OUTPUT XSUM,X2SUM; ('
XSUM=',E10.3,5X,'X2SUM=',E10.3;

STOP; END;

%% "Signals end of Mortran3
input"

Fortran Code:

XSUM=0.0

X2SUM=0.0

DO 11 I=1,10

X=I

XSUM=XSUM + X

X2SUM=X2SUM + X*X

11 CONTINUE

12 CONTINUE

WRITE(6,20)XSUM,X2SUM

20 FORMAT('
XSUM=',E10.3,5X,'X2SUM=',E10.3)

STOP
END

Elementary Mortran310

NRC-CNRCNRC-CNRC

Example 2

IF(IRL.EQ.1) [A=B;]

ELSEIF(IRL.EQ.2) [C=D;]

ELSE [X=Y;]

Z=10;

� Mortran easier to read than Fortran (kind of like C)

� IF-ELSE statements may be nested to any depth

� Could also have written:

IF IRL.EQ.1 [A=B;] or IF IRL=1 [A=B;]

� Caution – do not mix methods:

IF(IRL=1 & IRL=2) is OK…but

IF(IRL=1.AND.IRL=2) is not OK

Elementary Mortran311

NRC-CNRCNRC-CNRC

Example 2 (cont.)

Mortran Code:
IF(IRL.EQ.1) [A=B;]

ELSEIF(IRL.EQ.2) [C=D;]

ELSE [X=Y;]

Z=10;

Fortran Code:
IF ((IRL.EQ.1)) THEN

A=B

ELSE IF((IRL.EQ.2)) THEN

C=D

ELSE

X=Y

END IF

Z=10

Elementary Mortran312

NRC-CNRCNRC-CNRC

Loops – Other Than DO-loops

� In the following: e = logical expression, […] = block of statements

o WHILE e […]

e is tested first – block executed if e true

o LOOP […] WHILE e

e is tested last – block re-executed if e true

o UNTIL e […]

e is tested first – block executed if e false

o LOOP […] UNTIL e

e is tested last – block re-executed if e false

o WHILE e […] UNTIL f

Test e first AND test f last , etc. etc. etc.

Elementary Mortran313

NRC-CNRCNRC-CNRC

Loops (cont.)

FOR v=e TO f BY g […]

where e, f and g are expressions and v is a control variable

Note: v can be REAL, INTEGER or an array

� Example 3 (taken from pegs4.mortran)

"***NOW FILL UP MSMAP."

FOR IS=1 TO MSTEPS-1 [

FOR J=FSTEP(IS) TO FSTEP(IS+1)-1 [MSMAP(J)=IS;]]

MSMAP(JRMAX)=MSTEPS;

Elementary Mortran314

NRC-CNRCNRC-CNRC

Loops (cont.)

Mortran Code:
"***NOW FILL UP MSMAP."

FOR IS=1 TO MSTEPS-1 [

FOR J=FSTEP(IS) TO
FSTEP(IS+1)-1 [MSMAP(J)=IS;]]

MSMAP(JRMAX)=MSTEPS;

Fortran Code:

C ***NOW FILL UP MSMAP.

IS=1

GO TO 993

991 IS=IS+1

993 IF(IS-(MSTEPS-1).GT.0)GO TO 992

J=FSTEP(IS)

GO TO 1003

1001 J=J+1

1003 IF(J-(FSTEP(IS+1)-1).GT.0)GO TO 1002

MSMAP(J)=IS

GO TO 1001

1002 CONTINUE

GO TO 991

992 CONTINUE

MSMAP(JRMAX)=MSTEPS

Elementary Mortran315

NRC-CNRCNRC-CNRC

DO-loops

DO I=1,J,K,N [�]

is typical, where all must be integers

Also available:

[I=J,K,N; �]

which is called the compact DO-loop

Elementary Mortran316

NRC-CNRCNRC-CNRC

Forever-loops

LOOP [�]

or

LOOP [�] REPEAT

(the REPEAT is simply a “visual aid”)

Elementary Mortran317

NRC-CNRCNRC-CNRC

How can you get out of loops?

Answer: Using the following statements with conditionals

NEXT;

EXIT;

GO TO :label:;

Elementary Mortran318

NRC-CNRCNRC-CNRC

Example 4

:START:

LOOP [�Start of infinite loop�

IF e [EXIT;] [�Automatically exits to :HERE:�

ELSEIF f [GO TO :THERE:;]

ELSEIF g [GO TO :Neither_HERE_nor_THERE:;]

] �End of infinite loop�

:HERE: ��actually, this label is not required�

:THERE:

:Neither_HERE_nor_THERE:

Elementary Mortran319

NRC-CNRCNRC-CNRC

Example 5

DO I=1,10 [

IF e [NEXT;]

ELSEIF f [EXIT;]

�miscellaneous code�

]

Elementary Mortran320

NRC-CNRCNRC-CNRC

Multiple Assignment – Example 6

� Assigning value to several variables in the same statement

/MED(1),MED(5),MED(6)/=0;

produces the following Fortran

MED(1)=0;

MED(5)=0;

MED(6)=0;

Elementary Mortran321

NRC-CNRCNRC-CNRC

Multiple Assignment – Example 7

/I,A(I,K),J/=SQRT(X/2.0);

produces the following Fortran
I=SQRT(X/2.0)
A(I,K)=SQRT(X/2.0)
J=SQRT(X/2.0)

Note: /MED(1)/=0; (i.e., a single assignment)

will not work – use must explicitly use

MED(1)=0;

Elementary Mortran322

NRC-CNRCNRC-CNRC

Input/Output – Example 8

INPUT A,B,C; (3E15.5);

OUTPUT X,Y,Z; (�X,Y,Z=�,5X,3(F10.2,1X));

produces the following Fortran

READ(5,10) A,B,C

10 FORMAT(3E15.5)

WRITE(6,20) X,Y,Z

20 FORMAT(�X,Y,Z=�,5X,3(F10.2,1X))

where statement numbers 10 and 20 were generated by the
Mortran (and may be initialized by the user)

Elementary Mortran323

NRC-CNRCNRC-CNRC

Input/Output – Example 9

READ(5,:FMT1:) A,B,C;

:FMT1: FORMAT(3E15.5);

WRITE(6,:FMT1:) X,Y,Z;

produces the following Fortran

READ(5,10) A,B,C

10 FORMAT(3E15.5)

WRITE(6,10) X,Y,Z

which is standard in Fortran – allowing for further use of
:FMT1: elsewhere

