Elementary Mortran3

Walter R. Nelson
Stanford Linear Accelerator Center

MNRCCrIRe

Introductory Remarks
.

e EGSruns most effectively in the language in which it is
written — Mortran3

e Mortran issimply astring processor that produces Fortran77
code

e Users should learn Mortran in order to take advantage of the
more advanced features of EGSnrc

e EGSnrc can berun directly in Fortran77, but we don't advise
doing it thisway. Mortran iseasy tolearn...and it’sfun

Elementary Mortran3

MNRCCrIRe

What isMortran?

o]
e Theterm Mortran has several meanings:
- A structured language
- A trandator for that language
— A macro processor

e The macro-processor facility of Mortran will be discussed in
a subsequent lecture

e Inthislecture, we will concentrate only on those things one

really needs to know in order to create a User Code for
EGSnrc

Elementary Mortran3

MNRCCrIRe

Mortran as a String Processor
S

e The Mortran string processor isan ANSI| standard Fortran77/
code (mortran3.f)

e Thejob of the user isto write aUser Code that gets
“sandwiched” within a set of EGSnrc files

egsnrc.macros + User Code + egsnrc.mortran

e This package then getsread in and string processed by
mortran3.f using a set of conversion rules

Elementary Mortran3

MNRCCrIRe

... a String Processor
-

e Theoutput isalarge Fortran (.f) file consisting of the User
Code plus the necessary parts of EGSnrc itself

e Thislarge program is then compiled, linked and executed
like any other Fortran code

e A scriptisgenerally employed to facilitate putting together
the “ sandwich”, creating the executable and running the job

Elementary Mortran3

MNRCCrIRe

Mortran asa Structured L anguage
c---

e The primary Mortran3 referenceis:

A. J. Cook, The Mortran3 User’s Guide,
SLAC Internal Report CGTM-209 (1983)

which istoo difficult for the beginner (so we won't use it)

e A more useful Mortran manual entitled
EGS User Guide to MORTRAN3

IS provided in Section 7 of the EGSnrc manual (PIRS-701)

e Thislecturewill not cover al the rules of Mortran, but will
simply provide enough examples to illustrate the basics

Elementary Mortran3

MNRCCrIRe

... aStructured Language
c---

e Inthe examplesthat follow we will interlace commentary to
explain various features. Here are the rulesfor this:

- Comments are placed inside of double quotes
(e.q., “string”)

- Comments may be inserted anywhere, except in character
strings

— Also, avoid placing them inside macros until you become
an EGSpert

Elementary Mortran3

MNRCCrIRe

Example 1
S

XSUMEO. 0; X2SUM=0. 0;
DO 1=1,10 ["Start of DO | oop"
X=I;
XSUMEXSUM + X;
X2SUMEX2SUM + X* X;
] "End of DO | oop”
OUTPUT XSUM X2SUM (' XSUME', E10. 3, 5X, ' X2SUM=' , E10. 3) ;
STOP; END;
%% "Signals end of Mdrtran3 input”

e Statements terminate with asemicolon (;)
e Morethan one statement on aline
e Statements start in any column
— DO-loopissimplified...just use brackets: [and]
— No need for statement number or CONTI NUE statement
e QUTPUT iseasy way tosay WRI TE(6, etc.)

...with FORVAT statement following immediately Elementary Mortran3

MNRCCrIRe

Example 1 (cont.)
c-

Mortran Code: Fortran Code:

XSUME=O0. 0O; X2SUME=O0. 0O; XSUMEO. 0

DO 1=1,10 ["Start of DO | oop" X2SUMEO. O
X=I; DO 11 I =1, 10

XSUMEXSUM + X;
X2SUMEX2SUM + X* X;
] "End of DO I oop”

OQUTPUT XSUM X2SUM ('
XSUM=' | E10. 3, 5X, ' X2SUM=' | E10. 3;

X=I
XSUMEXSUM + X
X2SUMEX2SUM + X* X
11 CONTI NUE
12 CONTI NUE

STOP;, END;
% "Signals end of Mrtran3 VRI TE(6, 20) XSLM X2SUM
I nput " 20 FORMAT(
XSUME' |, E10. 3, 5X, ' X2SUMF' , E10. 3)
STOP
END

Elementary Mortran3

MNRCCrIRe

Example 2
S

| F(I RL. EQ 1) [A=B;]
ELSEI F(I RL. EQ 2) [C=D;]
ELSE [X=Y;]
Z=10;
e Mortran easier to read than Fortran (kind of like C)
e | F- ELSE statements may be nested to any depth
e Could also have written:
IF IRL.EQ1 [A=B;] or IFIRL=1 [A=B;]
e Caution —do not mix methods:
| F(1RL=1 & | RL=2) isOK ...but
| F(1 RL=1. AND. | RL=2) isnot OK

Elementary Mortran3

MNRCCrIRe

Example 2 (cont.)
c-

Mortran Code: Fortran Code:
| F(1 RL. EQ 1) [A=B;] |F ((IRL. EQ 1)) THEN
ELSElI F(I1 RL. EQ 2) [C=D;] A=B
ELSE [X=Y:] ELSE | F((I RL. EQ 2)) THEN
Z=10; C=D

ELSE

X=Y

END | F

Z=10

Elementary Mortran3

MNRCCrIRe

L oops— Other Than DO-loops
-

e Inthefollowing: e =logica expression, [..] =block of statements

o WHLE e [.]

e istested first — block executed if e true
o LOOP [.] WHLE e

e istested last — block re-executed if e true
o UNTIL e [.]

e istested first — block executed if e false
o LOOP [.] UNTIL e

e istested last — block re-executed if e false
o WHILE e [.] UNTIL f

Test e first AND testf last, etc. etc. etc.

Elementary Mortran3

MNRCCrIRe

L oops (cont.)
-

FOR v=e TOf BY g [.]
wheree, f and g areexpressions and v isacontrol variable
Note: v canbe REAL, | NTEGER or an array

e Example 3 (taken from pegs4.mortran)

"x+%NOW FI LL UP NMSMAP. "
FOR | S=1 TO MSTEPS-1 |
FOR J=FSTEP(1S) TO FSTEP(IS+1)-1 [MSBMAP(J)=IS;]]
MSMAP(JRVAX) =MSTEPS:

Elementary Mortran3

MNRCCrIRe

L oops (cont.)
-

Mortran Code Fortran Code:

"***NOW FI LL UP MBMAP. "
FOR 1S=1 TO MBTEPS-1 |

C ***NOW FI LL UP MSNVAP.

| S=1
FOR J=FSTEP(IS) TO
FSTEP(1 S+1) - 1 ([MS)NAP(J) 1S 1] o1 reclent
MBMVAP(JRVAX) =MSTEPS; 993 | F(1 S- (MSTEPS- 1) . GT. 0) GO TO 992
J=FSTEP(| S)
GO TO 1003
1001 J=J+1
1003 | F(J- (FSTEP(1 S+1) - 1) . GT. 0) GO TO 1002
MSMAP(J) =1 S
GO TO 1001
1002 CONTI NUE
GO TO 991

992 CONTI NUE
MVSMAP(JRVAX) =MBTEPS

Elementary Mortran3

MNRCCrIRe

DO-loops
c---

DO I=1,],K,N [...]
Istypical, where all must be integers

Also avallable:
[1=],K,N; ...]
which is called the compact DO-loop

Elementary Mortran3

MNRCCrIRe

Forever-loops
c---

LOORP [...]

or
LOOP [...] REPEAT

(the REPEAT issimply a“visual aid”)

Elementary Mortran3

MNRCCrIRe

How can you get out of loops?
S

Answer: Using the following statements with conditionals

NEXT;
EXIT;
GO TO :label:;

Elementary Mortran3

MNRCCrIRe

Example4
S

:START:

LOOP [“Start of infinite loop”
IF e [EXIT;] ["Automatically exits to :HERE:"”
ELSEIF f [GO TO :THERE:;]
ELSEIF g [GO TO :Neither_HERE_nor_THERE:;]

] “End of infinite loop”

:HERE: “...actually, this label is not required”

: THERE:

:Neither HERE_nor_ THERE:

Elementary Mortran3

MNRCCrIRe

Example5
c-

DO I=1,10 [
IF e [NEXT;]
ELSEIF f [EXIT;]
...miscellaneous code...

]

Elementary Mortran3

MNRCCrIRe

Multiple Assignment — Example 6
-

e Assigning value to several variables in the same statement
/MED(1),MED(5),MED(6)/=0;
produces the following Fortran

MED(1)=0;
MED(5)=0;
MED(6)=0;

Elementary Mortran3

MNRCCrIRe

Multiple Asssignment — Example 7
-

/T,A(L,K),1/=SQRT(X/2.0);
produces the following Fortran
[=SQRT(X/2.0)
A(I,K)=SQRT(X/2.0)
J=SQRT(X/2.0)
Note: /MED(1)/=0; (i.e., asingle assignment)
will not work — use must explicitly use
MED(1)=0;

Elementary Mortran3

MNRCCrIRe

| nput/Output — Example 8
S

INPUT A,B,C; (3E15.5);
OUTPUT X,Y,Z; (‘X,Y,z=',5X,3(F10.2,1X));
produces the following Fortran
READ(5,10) A,B,C
10 FORMAT(3E15.5)
WRITE(6,20) X,Y,Z
20 FORMAT('X,Y,Z=",5X,3(F10.2,1X))

where statement numbers 10 and 20 were generated by the
Mortran (and may be initialized by the user)

Elementary Mortran3

MNRCCrIRe

| nput/Output — Example 9
S

READ(5,:FMT1:) A,B,C;
:FMT1: FORMAT(3E15.5);
WRITE(6,:FMT1:) X,Y,Z;
produces the following Fortran
READ(5,10) A,B,C
10 FORMAT(3E15.5)
WRITE(6,10) X,Y,Z
which is standard in Fortran — allowing for further use of
:FMT1: elsewhere

Elementary Mortran3

