
NRC-CNRCNRC-CNRC

Advanced Mortran3

Macros & Other Tricks

Walter R. Nelson
Stanford Linear Accelerator Center

Advanced Mortran32

NRC-CNRCNRC-CNRC

Macros – Simple String Replacements

� The Mortran3 macro-processor may be regarded as a device
that accepts and applies transformation rules

� The simplest macro is string replacement:

REPLACE {pattern} WITH {replacement}

Note other names: pattern � template

replacement � value

� Macro definitions are not statements and therefore need not
be terminated with semicolons (they will be ignored)

≡≡≡≡

Advanced Mortran33

NRC-CNRCNRC-CNRC

Example 10 – String Replacement

REPLACE {$MXREG} WITH {2000}

REPLACE {;COMIN/BOUNDS/;} WITH

{;COMMON/BOUNDS/ECUT($MXREG),PCUT($MXREG),

VACDST;}

The macro-processor will search both the User Code and the
EGSnrc code…and will replace every occurrence of the string

;COMIN/BOUNDS/;

with the following Fortran

COMMON/BOUNDS/ECUT(2000),PCUT(2000),VACDST

Advanced Mortran34

NRC-CNRCNRC-CNRC

Assembling and EGSnrc Deck*

1) egsnrc.macros – Contains default macros

2) User Code – May contain override macros plus templates

3) egsnrc.mortran – Contains templates

* Also called a “sandwich”

Advanced Mortran35

NRC-CNRCNRC-CNRC

Example of a Default Macro

In the file called egsnrc.macros we have

REPLACE {$MXREG} WITH {2000}

REPLACE {;COMIN/BOUNDS/;} WITH

{;COMMON/BOUNDS/ECUT($MXREG),PCUT($MXREG),

VACDST;}

The string $MXREG gets replaced by the number 2000 in all
code that follows the first replacement macro…unless there
is an overriding macro further down in the “sandwhich”.

Advanced Mortran36

NRC-CNRCNRC-CNRC

Example of an Override Macro

� We can add the following line to our User Code

REPLACE {$MXREG} WITH {20}

and this will force 20 to be used instead of 2000 as a
replacement for $MXREG in all code that follows.

� This applies to the User Code itself, where we might want
access to ECUT and PCUT and have included the statement

;COMIN/BOUNDS/;

� And it also applies to…

Advanced Mortran37

NRC-CNRCNRC-CNRC

…Example of an Override Macro (cont.)

…the BLOCK DATA (in egsnrc.mortran):

;COMIN/BOUNDS/;

DATA ECUT/$MXREG*0./,PCUT/$MXREG*0./,

VACDST/1.E8/;

The appropriate COMMONs will get expanded and the

initialization will get done using 20 regions (instead of

2000, the default value for EGSnrc).

Advanced Mortran38

NRC-CNRCNRC-CNRC

Example of Templates in the EGSnrc

Throughout egsnrc.mortran you will see templates, such as

COMIN/BOUNDS/;

and

DO JR=1,$MXREG [MD=MED(JR);]

Most typically these “strings” can be recognized by a $ prefix,

or by an unfamiliar combination of letters and words, such as

$RANDOMSET RNNO01;

Advanced Mortran39

NRC-CNRCNRC-CNRC

Control Cards

� More properly called “processor-control directives”,
Mortran control cards may appear anywhere within the
program

� There is a much more complete discussion of control cards
in Section 7.6 of the EGSnrc manual (PIRS-701)

� They fall into two categories:

– Free-form directives

– Column-one-restricted directives

Advanced Mortran310

NRC-CNRCNRC-CNRC

…Control Cards (cont.)

� Free-form directives may appear anywhere on any line and
are not limited by number—we will talk them later on in this
lecture

� Column-one-restricted-directives, on the other hand, MUST
begin with a % in column one and only ONE directive per
line is recognized

Advanced Mortran311

NRC-CNRCNRC-CNRC

…Control Cards (cont.)
%I, %F, %M and %%

� The only required “control card” is the %%, which must be
the last card in the “sandwhich”. It tells the macro-processor
where the Mortran data ends.

� The %In directive defines spacing in the Mortran listing

– e.g., to indent 2 places per nest level in the Mortran
listing, use %I2

� The %F and %M allows the user to switch back and forth
between Mortran and Fortran (which we will show next)

Advanced Mortran312

NRC-CNRCNRC-CNRC

…Control Cards (cont.)

%I2 �Indent TWO spaces in the Mortran listing�
�MAIN code (including HOWFAR and AUSGAB) follows�
STOP; END;

%I2 �An extra one is needed (explained later)�
%F �This is the Mortran-to-Fortran switch�

SUBROUTINE X ! Writing in FORTRAN now
RETURN
END

FUNCTION Y ! Still writing in FORTRAN
RETURN
END

%M �This is the Fortran-to-Mortran switch�

Advanced Mortran313

NRC-CNRCNRC-CNRC

…Control Cards (cont.)

� Problem with %F

– A bug in the Mortran3 processor causes statements
“preceding” the %F to be “eaten up”

– To avoid this, simply add a line with a %I2 immediately
before each %F line

– Or, a line with a semicolon will works just as well

Advanced Mortran314

NRC-CNRCNRC-CNRC

A Few General Items

� The null macro:

REPLACE {$MXREG} WITH {;}

Does just what it says – nothing! …well, not exactly

� Buffer overflow:

– Happens when the working (string) buffer gets full

– For example, when you have created too many comments

– Remedy: Insert a semicolon to clear the buffer

Advanced Mortran315

NRC-CNRCNRC-CNRC

The Disappearing Semicolon Problem

� This usually only occurs at the beginning of a User Code (e.g., with the
very first COMIN statement), as we shall explain

� Assume that COMIN/BOUNDS/; is the first statement and carefully
note that there is the usual (required) trailing semicolon, but not a leading
one

� The macro

REPLACE {;COMIN/BOUNDS/;} WITH

{;COMMON/BOUNDS/ECUT($MXREG),PCUT($MXREG),

VACDST;}

will simply not be able to match the pattern in this case.

� Remedy is quite simple � ;COMIN/BOUNDS/;

Advanced Mortran316

NRC-CNRCNRC-CNRC

Parameters in Macros

� The pattern part of a macro may contain up to nine formal
parameters, denoted by the # symbol

� Formal parameters are also called “dummy” parameters

� For example, the pattern

{EXAMPLE#PATTERN#DEFINITION}

contains two formal parameters, and they are positional

(the first # is the first formal parameter, etc.)

Advanced Mortran317

NRC-CNRCNRC-CNRC

…Parameters in Macros (cont.)

� The corresponding actual parameters are detected and saved
during the matching process

� For example, in the string

EXAMPLE OF A PATTERN IN A MACRO DEFINITION
----- --------------
{P1} {P2}

the first actual parameter is the string OF A and the second
actual parameter is the string IN A MACRO

Advanced Mortran318

NRC-CNRCNRC-CNRC

…Parameters in Macros (cont.)

� The parameters are saved in a holding buffer until

– All of the matching is done

– The expansion process is completed

� The replacement part of a macro may contain an arbitrary
number of occurrences of formal parameters of the form
{Pi}, where i=1, 2, 3,�9

� During expansion, each formal parameter of the replacement
part gets replaced by the i-th actual parameter

Advanced Mortran319

NRC-CNRCNRC-CNRC

Example 11 – Simple Use of Parameters

� Consider the macro

REPLACE {PLUS #;} WITH {{P1}={P1}+1;}

where there is only one formal parameter—i.e., the single
occurrence of #

� This macro would match a string in the code text, such as

PLUS NCOUNT;

and, after expansion, would produce

NCOUNT=NCOUNT+1;

Advanced Mortran320

NRC-CNRCNRC-CNRC

Example 12 – The PARAMETER Macro

� The following macro is defined in egsnrc.macros:
REPLACE {PARAMETER #=#;} WITH

{REPLACE {{P1}} WITH {{P2}}}

� Also in egsnrc.macros are the strings:
PARAMETER $MXMED=10;
PARAMETER $MXREG=2000;

� After expansion we get the following:
REPLACE {$MXMED} WITH {10}
REPLACE {$MXREG} WITH {2000}

which, of course, are used with other macros in EGSnrc

Advanced Mortran321

NRC-CNRCNRC-CNRC

The COMIN Macro – Revisited

� Consider the following macro in egsnrc.macros:
REPLACE {;COMIN/#,#/;} WITH {;COMIN/{P1}/;COMIN/{P2}/;}

� Upon finding the string
;COMIN/BOUNDS,EPCONT,STACK/;

the following expansion takes place
;COMIN/BOUNDS/; COMIN/EPCONT,STACK/;

which gets further expanded to
;COMIN/BOUNDS/; COMIN/EPCONT/; COMIN/STACK/;

which are then expand into their Fortran COMMONs

Advanced Mortran322

NRC-CNRCNRC-CNRC

The $COMIN-string Pattern

� $COMIN-string is a convenient way of defining which
COMMONs to include in the various subprograms of EGSnrc

� For example, the macro

REPLACE {$COMIN-ANNIH;} WITH
{;COMIN/DEBUG,STACK,UPHIOT,USEFUL,RANDOM/;}

defines the COMMONs for SUBROUTINE ANNIH

and it is implemented by placing the pattern $COMIN-ANNIH
at the beginning of SUBROUTINE ANNIH

Advanced Mortran323

NRC-CNRCNRC-CNRC

Example: $COMIN-ANNIH

To be specific, the pattern $COMIN-ANNIH is located as shown:
SUBROUTINE ANNIH;
$COMIN-ANNIH;
(many lines of code)
RETURN; END;

and it gets expanded to
SUBROUTINE ANNIH;
;COMIN/DEBUG,STACK,UPHIOT,USEFUL,RANDOM/;
(many lines of code)
RETURN; END;

and then further expanded into…

Advanced Mortran324

NRC-CNRCNRC-CNRC

�$COMIN-ANNIH (cont.)

SUBROUTINE ANNIH;

;COMIN/DEBUG/;

;COMIN /STACK/;

;COMIN /UPHIOT/;

;COMIN/USEFUL/;

;COMIN/RANDOM/;

(many lines of code)

RETURN; END;

Advanced Mortran325

NRC-CNRCNRC-CNRC

User Addition to $COMIN-string Macro

� Many macros of the type $COMIN-string can be found in the
subprograms (and BLOCK DATA) of EGSnrc

� Simply search for $COMIN throughout egsnrc.macros

� One way of adding new COMMONs to a subprogram is to add
override code at the beginning of your User Code

� One can use REPLACE, but it is much better to use APPEND

� The reason why can be found in the EGSnrc manual (see
APPEND vs REPLACE in the index)

Advanced Mortran326

NRC-CNRCNRC-CNRC

…$COMIN-string Macros (cont.)

� Here is the recommended way of adding your new COMMON
to an EGSnrc subprogram:

APPEND {;COMIN/YOUR/;} TO {$COMIN-ANNIH;}

plus, of course, the necessary definition

REPLACE {;COMIN/YOUR/;} WITH

{;COMMON/YOUR/MyArray($MXMED),MyInteger;}

Advanced Mortran327

NRC-CNRCNRC-CNRC

Summary to this point

� Macro changes are global changes

� They allow one to get into EGSnrc during run time

� No permanent changes need to be made to EGSnrc itself

� Maintain the same EGSnrc code for everyone…only the
User Codes need to be different (i.e., customized)

� User Code changes are actually in the form of overrides

� Benefit: Changes become more obvious to all EGSnrc users

Advanced Mortran328

NRC-CNRCNRC-CNRC

List-Generator Macros

� There are a number of what we call list-generator macros

– Defined in egsnrc.macros

– Important for user to understand how they work

� The list-generator macro

$LGN(A,B,C(123))

produces the string

A(123),B(123),C(123)

Advanced Mortran329

NRC-CNRCNRC-CNRC

…List-Generator Macros (cont.)

� $LGN is often used in Block Commons

� For example

;COMIN/STACK/$LGN(E,X,Y,Z,U,V,W,DNEAR,WT,
IQ,IR,LATCH($MXSTACK)),NP,NPold,LATCHI;

ends up becoming the following Fortran:

COMMON/STACK/E(40),X(40),Y(40),Z(40),U(40),

* V(40),W(40),DNEAR(40),WT(40),IQ(40),IR(40),

* LATCH(40),NP,NPold,LATCHI

Advanced Mortran330

NRC-CNRCNRC-CNRC

Conditional REPLACEment

� Consider the two macros:
REPLACE {$COMPUTER} WITH {1} �Insert 1 for RS6000, 2 for Sparc�
REPLACE {$SpecialCode} WITH {

{SETR F=$COMPUTER}
[IF] {COPY F}=1 [�some lines of code]
[ELSE] [�different lines of code]

}

� The macro works as follows:
� $COMPUTER is defined by the user in the first macro
� F is one of 35 user-accessable counters, 1..9, and A�Z
– The F register is set equal to $COMPUTER

– A “copy” of F is used in the decision-making process

Advanced Mortran331

NRC-CNRCNRC-CNRC

The (original) $RANDOMSET Macro

� Purpose of $RANDOMSET

– In-line code for the pseudo-random number generator
– Speed !

� $RANDOMSET used in the following example
$RANDOMSET RN; �Sample RN uniformly on (0,1)�
PHI=TwoPI*RN; �Obtain azimuthal angle�

which (originally) lead to the following in-line Fortran code:
IXX=IXX*663608941
IX(2)=IXX
RN=DRN+0.D0
PHI=TwoPI*RN

Advanced Mortran332

NRC-CNRCNRC-CNRC

…$RANDOMSET (cont.)

� Although the algorithm(s) used have changed over the years,
the concept has not

� One still needs make sure COMIN/RANDOM/ is still available
in any subprogram where $RANDOMSET is used

� Care should be taken to initialize the random number seed(s)

� There will more about random numbers in a subsequent
lecture—it is introduced here primarily to illustrate one of
several possible macro forms that have been used

Advanced Mortran333

NRC-CNRCNRC-CNRC

Control Cards – Revisited

� Earlier we mentioned that there is a second type of control
card more properly known as the free-form directive
(reference: Section 7.6.2 of the EGSnrc manual)

� Examples include:
� !LIST; Turn on Mortran listing (same as %L)

� !COMMENTS; Print Mortran comments as Fortran comments
(but C remains in column one)

� !LABELS n; Reset Fortran statement-label generator to n

Advanced Mortran334

NRC-CNRCNRC-CNRC

…Control Cards (cont.)

� !INDENT Mn; Set automatic indentation of Mortran source
listing to n columns (same as %In)

� !INDENT Fn; Set automatic indentation of Fortran source
listing to n columns

� !INDENT Cn; Set automatic indentation of Fortran comments
to n columns (but C remains in column one)

Advanced Mortran335

NRC-CNRCNRC-CNRC

“Bracketing Out” Code

� There is a nice (but undocumented) way to bracket out
Mortran code—i.e, to actually leave code in place but have it
ignored during the Mortran-to-Fortran process

� The “brackets” are:

GENERATE; NOGENERATE; and ENDGENERATE;

� To properly implement this feature, you should first add the
free-form directive

!NEWCONDITIONAL;

somewhere prior to performing the “bracketing”

Advanced Mortran336

NRC-CNRCNRC-CNRC

…”Bracketing Out” Code (cont.)

!NEWCONDITIONAL; “Place near top of User Code”

(lots of code)

NOGENERATE; “Don’t process the following Mortran code”

(lines of code)
ENDGENERATE;

GENERATE; “Process the following Mortran code”

(lines of code)
ENDGENERATE;

