Advanced Mortran3

Macros & Other Tricks

Walter R. Nelson
Stanford Linear Accelerator Center

MNRCCrIRe

Macros— 3mple String Replacements
c-

e The Mortran3 macro-processor may be regarded as a device
that accepts and applies transformation rules

e The simplest macro is string replacement:

REPLACE {pattern} WITH {replacement}
Note other names: pattern > template

replacement - value

e Macro definitions are not statements and therefore need not
be terminated with semicolons (they will be ignored)

Advanced Mortran3

MNRCCrIRe

Example 10 — String Replacement
c-

REPLACE {$MXREG} WITH {2000}
REPLACE {:COMIN/BOUNDS/:} WITH
{:COMMON/BOUNDS/ECUT($MXREG),PCUT($MXREG),

VACDST:}

The macro-processor will search both the User Code and the
EGSnrc code...and will replace every occurrence of the string

;COMIN/BOUNDS/;

with the following Fortran
COMMON/BOUNDS/ECUT(2000),PCUT(2000),VACDST

Advanced Mortran3

MNRCCrIRe

Assembling and EGSnrc Deck”
S

1)
2)

3)

egsnrc.macros — Contains default macros
User Code— May contain override macros plus templates

egsnrc.mortran — Contains templates

* Also called a“ sandwich”

Advanced Mortran3

MNRCCrIRe

Example of a Default Macro
-

In the file called egsnrc.macros we have

REPLACE {$MXREG} WITH {2000}

REPLACE {;COMIN/BOUNDS/;} WITH
{;COMMON/BOUNDS/ECUT($MXREG),PCUT($MXREG),
VACDST;}
The string $MXREG gets replaced by the number 2000 in all

code that follows the first replacement macro...unless there
IS an overriding macro further down in the “ sandwhich”.

Advanced Mortran3

MNRCCrIRe

Example of an Override Macro
S
e \We can add the following line to our User Code
REPLACE {$MXREG} WITH {20}

and thiswill force 20 to be used instead of 2000 as a
replacement for $MXREG in all code that follows.

e Thisappliesto the User Code itself, where we might want
access to ECUT and PCUT and have included the statement

;COMIN/BOUNDS/;
e And it aso appliesto...

Advanced Mortran3

MNRCCrIRe

...Example of an Override Macro (cont.)
S

...the BLOCK DATA (in egsnrc.mortran):

: COMIN/BOUNDS/:
DATA ECUT/$MXREG*0./,PCUT/$MXREG*0./,
VACDST/1.E8/:

The appropriate COMMONSs will get expanded and the
Initialization will get done using 20 regions (instead of
2000, the default value for EGSnrc).

Advanced Mortran3

MNRCCrIRe

Example of Templatesin the EGSnrc
S

Throughout egsnrc.mortran you will see templates, such as
COMIN/BOUNDS/;

and
DO JR=1,$MXREG [MD=MED(JR);]

Most typically these “strings’ can be recognized by a $ prefix,
or by an unfamiliar combination of letters and words, such as

$RANDOMSET RNNOO1;

Advanced Mortran3

MNRCCrIRe

Control Cards

e More properly called “ processor-control directives’,
Mortran control cards may appear anywhere within the
program

e Thereisamuch more complete discussion of control cards
In Section 7.6 of the EGSnrc manual (PIRS-701)

e They fall into two categories.
— Free-form directives
— Column-one-restricted directives

Advanced Mortran3

MNRCCrIRe

...Control Cards (cont.)
S

e Free-form directives may appear anywhere on any line and
are not limited by number—we will talk them later on in this
lecture

e Column-one-restricted-directives, on the other hand, MUST
begin with a % in column one and only ONE directive per
lineis recognized

Advanced Mortran3

MNRCCrIRe

...Control Cards(cont.)
%]I, %F, %M and %%
-

e Theonly required “control card” isthe % %, which must be
the last card in the “sandwhich”. It tells the macro-processor
where the Mortran data ends.

e The %]In directive defines spacing in the Mortran listing

~- eg., toindent 2 places per nest level inthe Mortran
listing, use %12

e The %F and %M allows the user to switch back and forth
between Mortran and Fortran (which we will show next)

Advanced Mortran3

MNRCCrIRe

...Control Cards (cont.)
.

%I2 "“Indent TWO spaces in the Mortran listing”
“MAIN code (including HOWFAR and AUSGAB) follows”
STOP; END;

%I2 "“An extra one is needed (explained later)”
%F “This is the Mortran-to-Fortran switch”

SUBROUTINE X I Writing in FORTRAN now
RETURN
END
FUNCTION Y I Still writing in FORTRAN
RETURN
END

%M “This is the Fortran-to-Mortran switch”

Advanced Mortran3

MNRCCrIRe

...Control Cards (cont.)
.

e Problem with %F

— A bug in the Mortran3 processor causes statements
“preceding” the %F to be “eaten up”

- Toavoid this, ssimply add aline with a %I2 immediately
before each %F line

— Or, aline with a semicolon will works just as well

Advanced Mortran3

MNRCCrIRe

A Few General l[tems
7

e Thenull macro:
REPLACE {$MXREG} WITH {;}

Does just what it says— nothing! ...well, not exactly

e Buffer overflow:
— Happens when the working (string) buffer gets full
- For example, when you have created too many comments

- Remedy: Insert a semicolon to clear the buffer

Advanced Mortran3

MNRCCrIRe

The Disappearing Semicolon Problem
.

e Thisusually only occurs at the beginning of aUser Code (e.g., with the
very first COMIN statement), as we shall explain

e Assumethat COMIN/BOUNDS/; isthefirst statement and carefully

note that there is the usual (required) trailing semicolon, but not aleading
one

e Themacro

REPLACE {;COMIN/BOUNDS/; } WITH
{;COMMON/BOUNDS/ECUT($MXREG),PCUT($MXREG),
VACDST;}
will ssimply not be able to match the pattern in this case.

e Remedy isquite smple = ;COMIN/BOUNDS/;

Advanced Mortran3

MNRCCrIRe

Parametersin Macros
-

e The pattern part of amacro may contain up to nine for mal
parameters, denoted by the # symbol

e Formal parametersare also called “dummy” parameters
e For example, the pattern
{EXAMPLE#PATTERN#DEFINITION}
contains two formal parameters, and they are positional

(thefirst # isthefirst formal parameter, etc.)

Advanced Mortran3

MNRCCrIRe

...Parametersin Macros (cont.)
.

e The corresponding actual parameters are detected and saved
during the matching process

e For example, in the string
EXAMPLE OF A PATTERN IN A MACRO DEFINITION

thefirst actual parameter isthe string OF A and the second
actual parameter isthe string IN A MACRO

Advanced Mortran3

MNRCCrIRe

...Parametersin Macros (cont.)
o]
e The parameters are saved in a holding buffer until

— All of the matching is done
— The expansion process is completed

e The replacement part of a macro may contain an arbitrary

number of occurrences of formal parameters of the form
{Pi}, where i=1, 2, 3,..9

e During expansion, each formal parameter of the replacement
part gets replaced by the i-th actual parameter

Advanced Mortran3

MNRCCrIRe

Example 11 — Simple Use of Parameters
-

e Consder the macro
REPLACE {PLUS #:} WITH {{P1}={P1}+1;}

where there is only one formal parameter—iI.e., the single
occurrence of #

e Thismacro would match astring in the code text, such as
PLUS NCOUNT;

and, after expansion, would produce
NCOUNT=NCOUNT+1;

Advanced Mortran3

MNRCCrIRe

Example 12 — The pARAMETER M acro
-

e The following macro is defined in egsnrc.macros:
REPLACE {PARAMETER #=#,;} WITH
{REPLACE {{P1}} WITH {{P2}}}
e AIlsoin egsnrc.macros are the strings:
PARAMETER $MXMED=10;
PARAMETER $MXREG=2000;
e After expansion we get the following:
REPLACE {$MXMED} WITH {10}
REPLACE {$MXREG} WITH {2000}

which, of course, are used with other macros in EGSnrc

Advanced Mortran3

MNRCCrIRe

The COMIN Macro — Revisited
7

e Consider the following macro in egsnrc.macros:
REPLACE {;COMIN/#,#/;}> WITH {;COMIN/{P1}/;COMIN/{P2}/;}

e Upon finding the string
; COMIN/BOUNDS,EPCONT,STACK/;

the following expansion takes place
;COMIN/BOUNDS/; COMIN/EPCONT,STACK/;

which gets further expanded to
; COMIN/BOUNDS/; COMIN/EPCONT/; COMIN/STACK/;

which are then expand into their Fortran COMMONS

Advanced Mortran3

MNRCCrIRe

The $COMIN-string Pattern
-

e $COMIN-string is aconvenient way of defining which
COMMONS to include in the various subprograms of EGSnrc

e For example, the macro

REPLACE {$COMIN-ANNIH;} WITH
{;COMIN/DEBUG,STACK,UPHIOT,USEFUL,RANDOM/; }

defines the COMMONS for SUBROUTINE ANNIH

and it isimplemented by placing the pattern $COMIN-ANNIH
at the beginning of SUBROUTINE ANNIH

Advanced Mortran3

MNRCCrIRe

Example. $COMIN-ANNIH
-]

To be specific, the pattern $COMIN-ANNIH islocated as shown:

SUBROUTINE ANNIH;
$COMIN-ANNIH;
(many lines of code)
RETURN; END;

and it gets expanded to

SUBROUTINE ANNIH;
;COMIN/DEBUG,STACK,UPHIOT,USEFUL,RANDOM/;
(many lines of code)

RETURN; END;

and then further expanded into...

Advanced Mortran3

MNRCCrIRe

...$COMIN-ANNIH (cont.)
c-

SUBROUTINE ANNIH;
;COMIN/DEBUG/;
;COMIN /STACK/;
;COMIN /UPHIOT/;
;COMIN/USEFUL/;
;COMIN/RANDOM/;
(many lines of code)
RETURN; END;

Advanced Mortran3

MNRCCrIRe

User Addition to $COMIN-string Macro
S

Many macros of the type $COMIN-string can be found in the
subprograms (and BLOCK DATA) of EGSnrc

Simply search for $COMIN throughout egsnrc.macros

One way of adding new COMMONS to a subprogram isto add
override code at the beginning of your User Code

One can use REPLACE, but 1t iIsmuch better to use APPEND

The reason why can be found in the EGSnrc manual (see
APPEND vs REPLACE in the index)

Advanced Mortran3

MNRCCrIRe

...$COMIN-string M acr os (cont.)
.

e Hereisthe recommended way of adding your new COMMON
to an EGSnrc subprogram:

APPEND {;COMIN/YOUR/;} TO {$COMIN-ANNIH; }

plus, of course, the necessary definition

REPLACE {;COMIN/YOUR/;} WITH
{;COMMON/YOUR/MyArray($MXMED),MyInteger; }

Advanced Mortran3

MNRCCrIRe

Summary to this point
c-

e Macro changes are global changes
e They allow oneto get into EGSnrc during run time

e No permanent changes need to be made to EGSnrc itself

e Maintain the same EGSnrc code for everyone...only the
User Codes need to be different (i.e., customized)

e User Code changes are actually in the form of overrides

e Benefit: Changes become more obviousto all EGSnrc users

Advanced Mortran3

MNRCCrIRe

List-Generator Macros
c]

e Thereare anumber of what we call list-generator macros

— Defined in egsnrc.macros
— Important for user to understand how they work

e Thelist-generator macro
$LGN(A,B,C(123))
produces the string
A(123),B(123),C(123)

Advanced Mortran3

MNRCCrIRe

...LIst-Generator Macros (cont.)
.

e $LGN iIsoften used in Block Commons

e For example

;COMIN/STACK/$LGN(E,X,Y,Z,U,V,W,DNEAR,WT,
IQ,IR,LATCH($MXSTACK)),NP,NPold,LATCHI;

ends up becoming the following Fortran:
COMMON/STACK/E(40),X(40),Y(40),Z(40),U(40),
* \/(40),W(40),DNEAR(40),WT(40),IQ(40),IR(40),
* LATCH(40),NP,NPold,LATCHI

Advanced Mortran3

MNRCCrIRe

Conditional REPLACEmMent
7

e Congder the two macros:

REPLACE {$COMPUTER} WITH {1} “Insert 1 for RS6000, 2 for Sparc”
REPLACE {$SpecialCode} WITH {

{SETR F=$COMPUTER}

[TF] {COPY F}=1 [...some lines of code]

[ELSE] [...different lines of code]

b
e The macro works as follows:
- $COMPUTER Isdefined by the user in the first macro
- Fisone of 35 user-accessable counters, 1..9, and A...Z
- TheF register Is set equal to $COMPUTER
— A “copy” of Fisusedin the decision-making process

Advanced Mortran3

MNRCCrIRe

The (original) $RANDOMSET Macro
S

e Purpose of $RANDOMSET
— In-line code for the pseudo-random number generator

~ Speed !
e $RANDOMSET used in the following example
$RANDOMSET RN; “Sample RN uniformly on (0,1)”
PHI=TwoPI*RN; “Obtain azimuthal angle”

which (originally) lead to the following in-line Fortran code:
IXX=IXX*663608941
IX(2)=IXX
RN=DRN+0.DO
PHI=TwoPI*RN

Advanced Mortran3

MNRCCrIRe

...$RANDOMSET (cont.)
c-

e Although the algorithm(s) used have changed over the years,
the concept has not

e One still needs make sure COMIN/RANDOM/ is still available
In any subprogram where $RANDOMSET IS used

e Care should be taken to initialize the random number seed(s)

e Therewill more about random numbers in a subsequent
lecture—it is introduced here primarily to illustrate one of
several possible macro forms that have been used

Advanced Mortran3

MNRCCrIRe

Control Cards— Revisited

e Earlier we mentioned that there is a second type of control
card more properly known as the free-form directive
(reference: Section 7.6.2 of the EGSnrc manual)

e Examplesinclude:

- ILIST; Turn on Mortran listing (same as %L)

- ICOMMENTS; Print Mortran comments as Fortran comments
(but C remainsin column one)

- ILABELS n; Reset Fortran statement-label generator to n

Advanced Mortran3

MNRCCrIRe

...Control Cards (cont.)
.

- 1INDENT Mn; Set automatic indentation of Mortran source
listing to n columns (same as %]In)

- 1INDENT Fn; Set automatic indentation of Fortran source
listing to n columns

- 1INDENT Cn; Set automatic indentation of Fortran comments

to n columns (but C remains in column one)

Advanced Mortran3

MNRCCrIRe

“Bracketing Out” Code
.

e Thereisanice (but undocumented) way to bracket out
Mortran code—I.e, to actually leave code in place but have it
Ignored during the Mortran-to-Fortran process

e The“brackets’ are:
GENERATE; NOGENERATE; and ENDGENERATE;

e To properly implement this feature, you should first add the
free-form directive

INEWCONDITIONAL;
somewhere prior to performing the “bracketing”

Advanced Mortran3

MNRCCrIRe

... Bracketing Out” Code (cont.)
.

INEWCONDITIONAL; “Place near top of User Code”
(lots of code)

NOGENERATE; “Don’'t process the following Mortran code”

(lines of code)
ENDGENERATE;

GENERATE; “Process the following Mortran code”

(lines of code)
ENDGENERATE;

Advanced Mortran3

