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Abstract

Approximation methods for practical and e�cient derivations of Moli�ere angular distribution

are attempted. The scale factor � characterizing the ionization process, solved in numerical

integrals, is well approximated by a series expansion of the solution with rest-mass up to the

second order. Moli�ere screening model is found well approximated by a simpler Born-type

model for wide variety of substances, so that the characteristic constants B and �M of angular

distribution for mixed or compound substances are derived far simply and enough accurately

from the Kamata-Nishimura constants for mixture without taking as many integrations as the

number of mixed substances for stochastic means. These con�rmations will be valuable for

rapid derivations of Moli�ere angular distribution, especially in tracing tracks of charged particle

in Monte Carlo simulations.

1 Introduction

Moli�ere theory of multiple Coulomb scattering [1, 2, 3] is one of the most accurate theories

[4, 5, 6] to describe stochastic aspects of charged particle traversing through substance, taking

account single scattering other than multiple scattering in the theory. Kamata and Nishimura

proposed another formulation of Moli�ere theory in their construction of cascade shower theory.

Their formulation will be characterized by that they remain the equation di�erential with traversed

thickness even after integrating with scattering angle in Hankel transforms and that they introduce

the Kamata-Nishimura constants to re
ect all the properties of substance. So the Moli�ere theory

has become far simple and convenient to get the result and to apply it on other problems.

One superior aspect of Kamata-Nishimura formulation to the Moli�ere-Bethe formulation is that

we can easily get Moli�ere angular distribution with ionization. The multiple scattering theory

with ionization is especially valuable for our application of the theory to Monte Carlo simulations,

because we can trace tracks of charged particle more e�ectively by taking comparatively longer

passages.

Kamata and Nishimura described their formulation for relativistic electrons of �xed energy. We

have attempted an improvement to make the formulation applicable to other charged particles of

moderate relativistic conditions with ionization. It required tedious numerical integrations in the

solution of the scale factor � characterizing the ionization process. And in the derivation of angular

distribution for mixed or compound substances, it required as many times of integration as the

number of the mixed substances in the evaluation of stochastic mean. In this report we propose

practical and e�cient approximations [7, 8] to conquest the above defects, found after the previous

international workshop of EGS [9].
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2 Derivation of Moli�ere Angular Distribution with Ionization

The di�usion equation of the Moli�ere angular distribution for charged particles of moderate

relativistic energy with charge z, rest-mass mc
2, and velocity � is described as

@ ~f

z2@t
= �

�
2

w2
~ff1�

1



ln
�
02
�
2

w2
g+ "

@ ~f

@E
; (1)

in the Fourier space [9]. The last term of the right hand side means charged particle lose energy of

z
2
" in unit radiation length, so that we have

E = E0 � z
2
"t: (2)

We use almost the same variable

w = 2pv=K =
2E

K
f1 � (

mc
2

E
)2g (3)

as in Rossi and Greisen [10], and introduce the correction factor of velocity due to the non-

proportional relation of the Moli�ere angle to the Born angle;
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K and 
 denote Kamata-Nishimura constants speci�c to the substance [11, 12, 9]. The solution of

Eq. (1) can be expressed as
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where �2G denotes the gaussian mean-square angle taking account rest-mass [9], derived from
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and the scale factor � is determined from
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Applying the translation formula [13], the solution (6) is reduced to the Moli�ere form,
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where the expansion parameter B and the unit of Moli�ere angle �M are derived from

B � lnB = 
� ln
 + ln(�z2t=�02); (10)

�M = �G

q
B=
: (11)

Thus we get the Moli�ere angular distributions f(#)2�#d# and fP(')d' for polar angle � and

projected angle �, respectively:
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with

# = �=�M and ' = �=�M: (14)

The functions f (k) and f
(k)
P are the universal functions de�ned in [1, 2], except the factor of 2� for

the polar distribution.

Moli�ere angular distributions are characterized by two parameters, the expansion parameter

B and the unit of Moli�ere angle �M. So we want to discuss the dispersions of Moli�ere angular

distribution due to various conditions, by these parameters.

3 Composite Variables To Describe Moli�ere Angular Distribution

Irrespective of Substances

Under the extreme relativistic condition,

E � mc
2
; (15)

we have

w ' 2E=K; (16)

� ' 1 (17)

from Eq. (3), so that the two parameters B and �M are determined by

B � lnB = 
� ln
 + ln �z2t; (18)
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we �nd the characteristic parameters are described universally irrespective of substances, by using

the composite variables z2t=(
e�
) and �M=(Ke
�
=2

=E0). The unit 
e�
=z2 for the traversed

thickness is almost the same as the mean free path of the single scattering larger than the screening

angle, measured in the radiation length. It should be noted that the characteristic parameters

represented in the composite variable, B and �M=(Ke
�
=2

=E0), are functions of fractional energy

E=E0, in case of the extreme relativistic condition.
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Figure 1: Discrepancies of B due to the dif-

ferent rest-masses. Incident energies E0="

correspond to 10, 102, 103, and 104 in unit

of 
e�
, from left to right.
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Figure 2: Discrepancies of �M due to the dif-

ferent rest-masses. Incident energies E0="

correspond to 10, 102, 103, and 104 in unit

of 
e�
, from left to right.

4 Discrepancy of Moli�ere Angular Distribution Arising From The

Di�erence of Rest-Mass

We investigate dispersions of the characteristic parameters, B and �M, due to the di�erence

of rest-mass mc
2, for singly charged particles with moderate relativistic energies. We assume the

Born parameter be small enough, zZ=137� � 1, which is realized at e.g. the penetration through

light substances. Then it satis�es �0 ' �, and we can determine the characteristic parameters as

B � lnB = 
� ln
 + ln(�t=�2); (24)

�M = �G

q
B=
; (25)

with �G from Eq. (7), and � is derived from

ln
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The scale factor �, so that B and �M, are functions of E0=mc
2 and E=mc

2 in this case.

We compare the results of B and �M for various E0=mc
2 of 10, 20, 50, and 1, in Figs. 1 and 2.

A slight di�erences appear with increase of the fractional thickness t=(E0=") especially for curves

of lower values of E0=mc
2.

5 Discrepancy of Angular Distribution Arising From The Non-

Proportional Relation of Moli�ere Screening Angle to The Born

Angle

Under the Moli�ere screening model with moderate relativistic energies, the characteristic pa-

rameters B and �M derived from Eqs. (10), (11) still require the explicit Z in the term �
0 even if we

use the above composite variables t=(
e�
) and �M=(Ke
�
=2

=E0). Di�erence of �
0 from � arises

from non-proportional relation of the Moli�ere screening angle to the Born angle. In this case, we

cannot describe the characteristic parameters irrespective of substances by the composite variables,

in the de�nite sense. But in case it satis�es �0 ' �, which is realized in case of Born parameter
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Figure 3: Discrepancies of B due to the dif-

ferent Moli�ere screening angles from Born

ones by substance. Incident energies E0="

correspond to 10, 102, 103, and 104 in unit

of 
e�
, from left to right.
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Figure 4: Discrepancies of �M due to the

di�erent Moli�ere screening angles from Born

ones by substance. Incident energies E0="

correspond to 10, 102, 103, and 104 in unit

of 
e�
, from left to right.

to be small enough, B and �M could be described universally irrespective of substances from Eqs.

(24), (25) by the composite variables.

We examine whether the relation �
0
' � still satis�es or not, so that the universal relations

satisfy or not, on the practical substances around us. The B and �M derived from �
0 by Eqs. (10),

(11) and those from � by Eqs. (24), (25) are compared on substances C, Fe, and Pb in Figs. 3

and 4. We cannot �nd any visible di�erences more than 1 percent between them within passage of

energy loss less than 80 percent.

6 Approximated Expression of The Scale Factor �

We have con�rmed it satis�es �0 ' � in practical cases. Then, applying the partial integration

on Eq. (26), we get
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The �rst two terms describe the scale factor � of Eq. (20) for the extreme relativistic condition.

The third term shows the contribution of the next higher term with rest-mass. The exact and the

approximated results of the scale factor � are compared against the fraction of energy loss in Fig.

5. Both agree well within the error of 1 percent up to the traversed thickness of energy loss of

about 70 percents.
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7 Approximated Derivation of Moli�ere Angular Distribution for

Mixed or Compound Substances

Exact results of the characteristic parameters B and �M for charged particles traversing through

mixed or compound substances will be derived [9] from

B � lnB = (
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q
B=�
; (32)

where we used the Kamata-Nishimura constants for mixture [11, 12, 9]. ��2G in the formula denotes

the mean square angle �2G derived using the constants for mixture, �K and �",

��2G =
�K2

2�"mc2
f

mc
2

pv
�

mc
2

p0v0
+
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2
ln
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2)
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g; (33)

and Pr[Q] denotes the stochastic mean of the quantity Qi's de�ned as the weighted mean by the

fraction pi of mass:

Pr[Q] =
X
i

piQi: (34)

Although this method gives the accurate results, it requires tedious calculations of as many inte-

grations as the number of mixed substances, in evaluation of the stochastic mean.

The evaluation becomes far simple in case it satis�es �0 ' � on the propagation, where B and

�M in Eqs. (31), (32) are reduced [9] to �B and ��M de�ned as

�B � ln �B = �
� ln �
 + ln(�z2t=�2); (35)

��M = ��G

q
�B=�
: (36)
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In practice, we have con�rmed in the section 5 the condition �
0
' � is satis�ed for almost all

the substances around us. We can expect the characteristic parameters B and �M for mixed or

compound substances would be approximated by �B and ��M. We have compared these approximated

values with exact ones for substances of H2O, Air, SiO2, and Nuclear Emulsion in Figs. 6 to 13.

Good agreements are con�rmed between the approximated values from Eqs. (35), (36) and the

exact ones from Eqs. (31), (32) within the di�erences of 1 percent.
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8 Practical and E�cient Method to Obtain Moli�ere Angular Dis-

tribution With Ionization

The Moli�ere angular distribution for charged particles of moderate relativistic energy traversing

through pure substances with ionization will be e�ectively derived as follows with enough accuracy.

We derive B and �M from Eqs. (10), (11), replacing �0 by � and substituting �G and � from Eqs.

(29), (30), then we get the spatial and projected angular distributions f(#) and fP(') by Eqs. (12)

and (13).

The distribution for charged particles traversing through mixed or compound substances can

be obtained practically in the same way by replacing the substance by a pure substance with the

Kamata-Nishimura constants for mixture, �
 and �K.

9 Conclusions and Discussions

A rapid and e�cient method to derive Moli�ere angular distribution is devised for charged particles

traversing through pure or mixed substances with ionization. We have con�rmed in Figs. 3 and

4 that Moli�ere screening angle can be approximated regarding proportional to the Born screening
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angle in our applications to usual substances around us of wide energy range. Under this condition

the scale factor � characterizing the ionization process can be approximated enough accurately

by series expansion with the rest-mass up to the second order as shown in Fig. 5. Also we have

con�rmed in Figs. 6 to 13 that the exact derivation of characteristic parameters B and �M for

mixed or compound substances by as many integration as the number of mixed substances is

approximated enough accurately by regarding the substance as a pure substance with the Kamata-

Nishimura constants for mixture.

A proposed method in the section 8 for practical and e�cient derivation of Moli�ere angular

distribution for charged particles with ionization will be valuable for rapid sampling of the distri-

bution in Monte Carlo simulations [14, 15, 16] as well as for quick evaluation of the distributions

in designing and analyses of experiments concerning charged particles.
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