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Abstract

The temperature rise in targets struck by high-energy electrons can be calculated using the EGS4

code[1] simply by scoring the energy-deposition density in small cylindrical volumes centered upon,

and divided along, the direction of the beam. The temperature rise per pulse, �Tp (�C/pulse), is

then obtained for each volume using the speci�c heat of the material, and the time dependence

of the heat 
ow can be calculated using conventional heat-transfer principles. Most typically the

beam size is accounted for in a straight-forward way by sampling the incident coordinates, but this

involves yet another statistical process that can result in a signi�cant increase in computation time

in order to reduce the variance, particularly for thick targets at very high energies. In this paper an

o�-line convolution method is presented in which the symmetry of the geometry and the Gaussian

shape of the beam is used, along with a set of EGS4 runs made with a �-function (i.e., pencil)

beam, to quickly obtain the temperature rise on the pulse for beams of any size. Examples are

given for studies that have recently been performed at SLAC in the design of the Next Linear

Collider.

1 Introduction

There are three important quantities which must be determined when designing targets capa-

ble of handling large temperature-rise excursions. Namely, the temperature rise on the pulse, the

maximum stress at the central core and the steady-state temperature. The latter two, however, are

derivable from the temperature rise per pulse, �Tp (
�C/pulse), and this, in turn, is obtained from the

energy-deposition density (i.e., fractional energy-loss per unit volume), dE=E0dV , as follows[2] [3] [4]

:

�Tp = C
NE0

�Cp

1

E0

dE

dV
; (1)

where

� = material density (g=cm
3
);

Cp = heat capacity � 6:0

A
(cal=g�C);

N = electrons=pulse;

E0 = incident beam energy (MeV);

A = atomic weight (g=mole);

C = 1:6� 10�13=4:184 (cal=MeV): :

1Work supported in part by the Department of Energy contract DE-AC03-76SF00515.
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The maximum radial stress (r=0) in a pulse, �r (psi), is then obtained with

�r =
�Ey�Tp

2(1� �p)
; (2)

where

�p = Poisson ratio (0:25 to 0:30);

� = coe�cient of thermal expansion (�C�1);

Ey = Young0s modulus (psi) :

The steady state temperature pro�le, T (r), is given by equating the heat input, _Q, inside a cylinder

of radius r to the heat conduction through the surface of the cylinder.

_Q = �NE0C

Z
r

0

1

E0

dE

dV
2�r dr = kT 2�r

dT

dr
; (3)

where

� = pulse repetition rate (sec�1);

kT = thermal conductivity coe�cient (cal sec�1 cm�1 �C�1) :

Therefore, one only needs to determine dE=E0dV using the EGS4 code.

2 Accounting for the Radial Extent of the Beam

The straight-forward method of accounting for the beam size with EGS4 is to sample the incident

coordinates (XI ; YI) over an appropriate distribution, such as a Gaussian, just prior to each call to

SUBROUTINE SHOWER. However, several problems arise from this direct method. First of all, at high

energies (multi-GeV) and for thick targets (many radiation lengths), a large amount of computer time

is spent just tracking the particles in the shower to the very low energies required in determining the

energy-deposition density itself. A limit must then be imposed on the number of incident particles

that can be sampled, for any given beam size, and the end result is that the radial distribution for the

temperature rise contains large 
uctuations.

Secondly, the calculation has to be run over and over again for each of the beam-spot sizes of

interest. Clearly, the time is better spent performing EGS4 calculations with good statistics, using a

�(XI)�(YI ) (i.e., pencil beam) input, and subsequently performing convolution-type integrations for

each of the beam sizes of interest.

The convolution method that we have developed applies to round Gaussian beams|i.e.,

�x = �y = �. It was developed by Ecklund and Nelson in 1981 [5] and subsequently used in the

thesis by Donahue [6] .

3 Gaussian Convolution of Pencil Beams

The general form of a one-dimensional Gaussian distribution is

f(x) =
1p
2��

Z
1

�1

e
�

(x�x)

2�2 dx : (4)

If we assume that the energy-deposition density of the pencil beam is given by

W0(r) �
1

E0

dE

dV
; (5)
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then the convoluted energy-deposition density is

W�(r) = f �W0 =

Z
f(x)W0(x) dx : (6)

For a two-dimensional Gaussian distribution in radial coordinates (x = r cos �, y = r sin �),

W�(r) =
1

2��2

Z
1

0
dr

Z 2�

0
d� re

�(
r
2+r

2
�2rr cos(���))

2�2 W0(r)

=
1

2��2

Z
1

0
rdr e

�(r�r)2

2�2 W0(r)

Z 2�

0
d� e

�
rr

�2
(1�cos �)

; (7)

where we have taken � = 0 without loss of generality.

Since the EGS4 output is in the form of a histogram averaged over radial bins, we have

W�(i) �
Z

ri+1

ri

W�(r) r dr : (8)

The convoluted distribution with the same binning is then

W�(i) =
X
j

MijW�(j) ; (9)

where

Mij =
1

��2(r2
i+1 � r2

i
)

Z
ri+1

ri

Z
rj+1

rj

rdr rdr e
�(r�r)2

2�2

Z 2�

0
e
�

rr

�2
(1�cos �)

d� : (10)

The integral over � can be reduced to a modi�ed Bessel function, I0. The double integration is done

numerically, taking special care (along i = j) to provide the quadrature routine with an integrand that

is not ill-behaved over the bin in question. The above equation assumes that the energy-deposition

density does not vary signi�cantly over the width of each bin.

4 Computer Codes for O�ine Convolution

The following computer codes have been written in order to demonstrate the convolution technique

presented in this paper.

� EGS4 User Code to create energy-deposition density data for small radial bins at various depths

into the target. The code can be run with a pencil beam input, � = 0:0. in order to generate the

W�(j) required by the o�-line convolution scheme. It can also be run with a Gaussian incident

beam, e.g., � = 10 or � = 100 microns.

� A program that creates the Gaussian convolution matrix elements, Mij , for a given set of beam

�, and a second program to check the
P

j
Mij = 1:0 for any i-bin.

� A program to convolute W�(j) and Mij and produce a new output �le for plotting the new

dE=E0dV (left ordinate) and the corresponding temperature rise, �Tp (�C/pulse) (right ordi-

nate).

A common element with all of these codes is that they must have the same radial binning structure.

In our example case (see Appendix 1), the target consists of 17 cylinders with radii of 1, 3, 5, 7, 10,

30, . . . , 3000, 5000, 7000 10000 microns.

These codes are of a general enough nature to be of use in a variety of temperature-rise (and other)

problems and can be downloaded from SLAC2.

2The �les are kept in /afs/slac.stanford.edu/public/groups/egs4/Convolution and can be obtained using anony-

mous ftp|i.e., ftp ftp.slac.stanford.edu followed by cd groups/egs4/Convolutions).
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4.1 EGS4 User Code to determine energy-deposition density, W�(j)

A general-purpose EGS4 User Code, called ucRTZ temp.mortran, has recently been written at

SLAC for a cylinder-slab geometry, with input read in from a .data �le. This code is similar to the

DOSRZ code by the National Research Council of Canada, which comes with the standard distri-

bution of EGS4, but it is tailored for more general use other than dosimetry. For the problem of

interest in this paper, another User Code was cloned from ucRTZ temp.mortran and given the name

ucRTZ temp spot.mortran, the only real di�erence being the addition of the capability of sampling

the incident beam-spot size from a Gaussian distribution. Associated with this code is the input �le

ucRTZ temp spot.data, an example of which is provided in Appendix 1.

In the section below entitled Veri�cation of Convolution Method we will use ucRTZ temp to gen-

erate 10 computer runs, each with 1000 incident electrons, using two modes:

� Pencil-beam mode: With � = 0:0 to create an output histogram, from the concatenation of ten

runs, to be used as input for the convolution code.

� Direct-sampling mode: With � set to either 10 or 100 microns to create an output histogram,

again a concatenation of ten runs, that can be compared with the results of the convolution (at

10 and 100 microns).

4.2 Programs to create (and check) matrix elements, Mij

After getting the basic set of histogram data|i.e., ten separate runs of the User Code with

di�erent random number seeds|the next step is to create a set of matrices for each of the values

of � required in the problem. To facilitate this a program called RTZ mat.mortran was created,

documentation for which is contained within the code itself. Another code, RTZ matck.mortran, has

also been created to check that the
P

j
Mij = 1:0 for any i-bin.

4.3 Program to convolute W�(j) and Mij

The program that performs the actual convolution is called RTZ temp spot.mortran. As described

above, it requires the following two input �les:

� RTZ temp spot.data

� RTZ mat.data

The �rst �le is a concatenation of EGS4 runs, ten in our example case, each created with the code

ucRTZ temp spot.mortran and its input data �le ucRTZ temp spot.data. The second �le is a con-

catenation of the matrix output from one or more runs of RTZ mat.mortran for each � of interest. In

our case, � = 3.16, 10, 20, 30, 50, 100, 500, 1000, 2000 and 3000 microns. Note, however, that we will

only make use of � = 10 and 100 microns in our veri�cation of the method, which is presented next.

5 Veri�cation of Convolution Method

If a beam-spot size is directly sampled prior to each SHOWER call in EGS4 a lot of computer time

is required in order to get adequate statistics, especially at high-energies, low cut-o�s, and for thick

materials. Hence, the reason for developing the convolution method in the �rst place. Nevertheless,

the direct-sampling method itself provides us with a way to verify that the convolution technique

works, provided that we limit the check to reasonably low-energy incident beams (note: a 1-GeV

shower takes 100 times less time than does a 100-GeV shower).

Using the ucRTZ temp spot User Code, we have done this veri�cation for an 8-r.l. thick copper

target (1-cm radius) struck by 1-GeV electron beams. The target is broken up along Z into eight

cylindrical slabs, each cylinder composed of 17 subcylinders, as indicated earlier (see Appendix 1).
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Accordingly, this same radial structure was also employed with the RTZ temp spot.mortran and and

RTZ mat.mortran codes.

The results are shown in Figures 1 and 2 for beam sizes of 10 and 100 microns, respectively. The

convoluted results (solid curves) are seen to be in excellant agreement with the directly-sampled results

(histograms), at both the front (0-1 r.l.) and back (7-8 r.l.) of the target, thereby demonstrating that

the convolution method works.

Figure 1: Comparision of direct-sampling (histogram) and convolution (solid curve) methods for a 1-GeV beam

striking an 8-radiation length Cu cylinder: �x = �y = 10 microns.

6 Temperature-Rise Examples from the NLC

The beam parameters for the Next Linear Collider (NLC)[7] create a very serious problem with

respect to the pulse temperature-rise in objects that the beam may inadvertantly strike. To illustrate

this problem using the codes described in this paper, we considered a pencil-beam energy of 500 GeV

impinging upon a 10-r.l. long Cu cylinder having a radius of 1 cm. The energy-deposition density and

the corresponding pulse temperature rise are shown as a function of radius in Figures 3 through 5, for

the beginning, middle and end of the target, respectively.

A full beam of 1012 electrons/pulse was used in these calculations and one sees that even in the

�rst layer of the target (Figure 3), where the shower has yet to develop fully, the temperature rise on

the pulse exceeds 20-million �C/p for the case of the pencil beam (histogram). In order to get the

temperature down to something more reasonable, say 100 �C/p, the convolution curves tell us that

the beam would have to be larger than 500 microns.

As the shower develops in the target, multiple scattering also leads to a lateral spread of the

energy-deposition density. In Figures 4 and 5 we see that, indeed, the multiple scattering has some

e�ect on reducing the temperature rise for incident beams with small emittance, but the shower

multiplication is just too strong for large beams (e.g., 500 microns), resulting in temperatures several

orders of magnitude higher deep in the shower, relative to what they were near the surface.
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Figure 2: Comparision of direct-sampling (histogram) and convolution (solid curve) methods for a 1-GeV beam

striking an 8-radiation length Cu cylinder: �x = �y = 100 microns.

Figure 3: Energy-deposition density and temperature rise as a function of radius at the beginning of the target

(�z = 0-1 r.l.)
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Figure 4: Energy-deposition density and temperature rise as a function of radius in the middle of the target

(�z = 4-5 r.l.)

Figure 5: Energy-deposition density and temperature rise as a function of radius at the end of the target (�z =

9-10 r.l.)
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To show the dramatic e�ect of shower multiplicity on beams of all sizes, we plot in Figure 6 the

maximum temperature rise as a function of depth, for the pencil beam and for the convolution curves

of each of the ten incident beams considered. Also shown is the melting temperature of Cu (dashed

line) and its stress limit (dotted line)[7].

Figure 6: Pulse temperature rise vs. target depth for a 500 GeV beam in Cu

From this �gure it becomes clear that even beams as large as 3000 microns could damage the

copper target in a single pulse. The question then becomes: \Is there a material that is more suitable

for full beams of the order of 1012 electrons/pulse?"

To answer this question we performed a similar analysis for Al and Be, with the results shown

in Figures 7 and 8, respectively. The results show that aluminum and beryllium might be able to

withstand a single pulse of the order of 1000 and 500 microns, respectively.
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Figure 7: Pulse temperature rise vs. target depth for a 500 GeV beam in Al

Figure 8: Pulse temperature rise vs. target depth for a 500 GeV beam in Be
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7 Conclusion

Running thick-target EGS4 calculations at high energies can be costly in computer time. That is,

the higher the energy the larger the shower multiplicity, implying that more particles must be followed

until they reach their energy cuto�s. This, in turn, makes it di�cult and time-consuming to study

the temperature-rise in targets, where the size of the beam must also be incorporated into the Monte

Carlo calculation in order to study real beams. Direct sampling over the beam size simply introduces

yet another statistical variance into the results, requiring longer and longer jobs to be run.

In the study presented in this paper, we have created a convolution technique in which a reasonable

set of computer runs, using a �-function incident beam, can be used together with a predetermined

set of beam matrices to obtain the temperature rise for a large number of beam sizes. We have

demonstrated, at 1 GeV, that the results are consistent with the more laborious \direct sampling"

approach, but the technique should be viable at any energy.

Also presented in this paper are some examples of the use of the convolution technique for

temperature-rise studies for the Next Linear Collider, where the basic problem of very-small emit-

tance beams of high-intensity and high-energy is shown to be formidable.
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Appendix 1

Representative example of the data-input �le: ucRTZ temp spot.data

ucRTZ_temp_spot.data

1 NMED (I10)

CU MEDIA(J,1) (24A1)

0.0 0.0 ECUTin,PCUTin (Kinetic) (MeV) (2F10.0)

17 1 8 Imax,Jmax,Kmax (3I10)

0.0001 I=1 CYRAD (cm) (F10.0)

0.0003 =2

0.0005 =3

0.0007 =4

0.0010 =5

0.0030 =6

0.0050 =7

0.0070 =8

0.0100 =9

0.0300 =10

0.0500 =11

0.0700 =12

0.1000 =13

0.3000 =14

0.5000 =15

0.7000 =16

1.0000 =17=Imax

0.0 J=1=Jmax THEPL (degrees) (F10.0) (no azimuthal)

0.0 K=1 ZPL (r.l. here, hard coded to cm in program)

1.0 =2

2.0 =3

3.0 =4

4.0 =5

5.0 =6

6.0 =7

7.0 =8=Kmax

8.0 =9=Kmax+1

1 17 1 1 1 8 1 0.0 CU

blank card (required EOF)

0.0 0.0 0.0 Xin,Yin,Zin (3F10.0)

1 1 1 Iin,Jin,Kin (3I10)

0.0 0.0 1.0 Uin,Vin,Win (3F10.0)

1 1 IXX,JXX (2I10)

1000 0.0100 Ncases,Sigma (I10,F10.0) (Sigma=0.0 implies pencil beam)

1000.0 -1 0 EKEin(MeV),IQin,Isamp (F10.0,2I10)

1 2 0 0 IBRDST,IPRDST,IBRSPL,NBRSPL (4I5)

0 0 0 0 0.0 IPLC,IBCA,ILCA,IOLDTM,BLCMIN (4I5,F10.0)
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