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Abstract

Moli�ere theory of angular distribution for fast charged particles is improved to take into account

ionization loss, by using Kamata-Nishimura formulation of the theory. Decrease of the particle

energy along the passage hence increase of the screening angle brings a slight di�erent results from

those derived by Moli�ere-Bethe formulation for �xed energies. The present results are reduced to the

same Moli�ere distribution with modi�ed values of the expansion parameter and the unit of Moli�ere

angle. Properties of the new distribution and di�erences from the traditional one are discussed.

Angular distributions of particles penetrating through the mixed or compound substances are

also investigated both under the relativistic and the nonrelativistic conditions, together with the

Kamata-Nishimura constants characterizing their formulation.

1 Introduction

Highly accurate theories of multiple Coulomb scattering are important when we design and analyze

experiments concerning charged particle and trace charged particles in computer simulation. Among

various theoretical predictions of the multiple scattering process, Moli�ere theory [1, 2, 3] is recognized

most advanced re
ecting the single and the plural scatterings in the theory, so that it has been widely

used in computer simulation codes [4, 5, 6]. In spite of its excellent formulation of the theory, it had

been a defect of Moli�ere theory that almost no theoretical improvements and applications to other

problems were achieved after his original constructions [1, 2, 7].

Kamata and Nishimura proposed another formulation of Moli�ere theory in their description of cas-

cade shower theory [8, 9], which is equivalent with the Moli�ere-Bethe formulation within the expansion

errors [10]. They described the theory in a di�erential form with traversed thickness, so that we can

regard it as a thorough extension of Fermi-Yang formulation [11, 12, 13, 14], and it made applications

of the Moli�ere theory very easy to other problems, for example, Kamata and Nishimura could add the

next higher term re
ecting the single and the plural scatterings to their shower theory [8, 9] and the

author could discuss the Moli�ere e�ect on the actual path length problem [13].

Recently we have found another superior aspect of the Kamata-Nishimura formulation that we

can easily take into account ionization loss in the Moli�ere angular distribution by only modifying

parameter values in the Moli�ere theory [15, 16, 17, 18]. It improves the accuracy and the reliability of

Moli�ere distribution. It has another important e�ect from the practical point of view that it improves

sampling e�ciency in computer simulations. In case using the traditional Moli�ere theory of �xed

energies, the sampling path length had to be restricted short so as not the distribution deformed due

to the decrease of particle energy [4, 19]. By using our distribution this restriction will be removed.

Unfortunately for us, Kamata-Nishimura formulation of Moli�ere theory is written for electron in the

relativistic condition and the characteristic constants are indicated for only restricted substances [8, 9].

So we have attempted to describe the formulation suitable for general energy range, and applicable

to variety of particles irrespective of mass and charge. The characteristic constants appearing in

the formulation are tabulated for various substances. Method to obtain the distribution for particles

traversing through mixed or compound substances is also discussed.
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2 The Angular Distribution With Ionization Under The Relativistic

Condition

Kamata and Nishimura proposed a very simple formulation of Moli�ere theory for electrons of

relativistic condition. Let f(�; t)2��d� be the angular distribution of electrons after traversing through

a thickness of tmeasured in radiation unit [11], receiving multiple Coulomb scattering under the axially

symmetric condition. The di�usion equation is described as

@ ~f

@t
= �

K2�2

4E2
~ff1 �

1



ln
K2�2

4E2
g; (1)

in the Fourier space [8, 9]. The equation possesses only two constants speci�c to the substance. Under

the �xed energy condition, the solution of equation becomes

~f =
1

2�
expf�

�2G�
2

4
(1�

1



ln
�2G�

2

4t
)g with �2G =

K2t

E2
: (2)

Using the translation formula indicated in the Appendix, the Kamata-Nishimura formulation is re-

duced to the Moli�ere-Bethe one and we get the Moli�ere angular distribution characterized by the two

parameters, the expansion parameter B and the unit of Moli�ere angle # = �=�M, determined by [13]

B � lnB = 
� ln
 + ln t and �M = �G

q
B=
: (3)

If we assume ionization loss of constant rate

E = E0 � "t: (4)

the di�usion equation becomes
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Then we have the solution
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1
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expf�

�2G�
2

4
(1�
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ln
�2G�
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4�t
)g with �2G =

K2t

E0E
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where

� = e2(E=E0)
(E0+E)=(E0�E): (7)

The characteristic parameters B and �M are determined by

B � lnB = 
� ln
 + ln �t and �M = �G

q
B=
: (8)

The angular distributions with ionization are compared with those without ionization in Fig. 1.

The width of distribution increases rapidly with dissipation of energy.

3 The Angular Distribution With Ionization Under The General

Energy Condition

The di�usion equation for the angular distribution in Kamata-Nishimura formulation equivalent

with that in Moli�ere-Bethe one is described as

@ ~f
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in the Fourier space. We de�ne

w = 2pv=K =
2E

K
f1� (

mc2

E
)2g (10)

and

�02 =
1:13 + 3:76�2

1:13 + 3:76�20
�2; with � =

zZ

137�
and �0 =

Z

137
: (11)

K and 
 denote Kamata-Nishimura constants [8, 9].

Under the ionization process of

E = E0 � "z2t; (12)

we get the solution as

~f =
1

2�
expf�

�2G�
2

4
(1�

1



ln

�2G�
2

4�z2t=�02
)g; (13)

where �G denotes the gaussian root-mean-square angle with Es replaced by K,

�2G =

Z t

0

4z2

w2
dt =

K2

2"mc2
f
mc2

pv
�
mc2

p0v0
+
1

2
ln
(E0 �mc2)=(E �mc2)

(E0 +mc2)=(E +mc2)
g; (14)

and � denotes the scale factor derived by

ln
�

�02
= ln

�2G
4z2t

�
4z2

�2G

Z t

0

1

w2
ln
�02

w2
dt: (15)

So that the angular distribution is determined by the expansion parameter B and the unit of Moli�ere

angle �M, derived from

B � lnB = 
� ln
 + ln(�z2t=�02) and �M = �G

q
B=
: (16)

In case of �0 � �, which is realized for e.g. light substances of �� 1 or for singly-charged relativistic

particle of � � �0, � determined from Eq. (15) becomes the function of E0=mc2 and E=mc2. � in this

case is plotted against fractional thickness, t=(E0="), in Fig. 2 for various E0=mc2. B and �M in this

case are plotted against the traversed thickness in Fig. 3 and Fig. 4. Di�erences of B and �M due to

di�erent E0=mc2 are small.

4 Derivation of Kamata-Nishimura Formulation and De�nition of

Kamata-Nishimura Constants

We take the single scattering formula as

�(�)2��d� =
4z2Z(Z + 1)e4

p2v2
��42��d� with � >

p
e�a; (17)

where �a is called the characteristic screening angle [3]. Then the probability density to receive

de
ection angle � after an in�nitesimal passage of dx measured in g/cm2 is

N

A
�(�)2��d�dx =

4N

A

z2Z(Z + 1)e4

p2v2
��42��d�dx

=
1

4�L

E2
s

p2v2
��42��d�

z2dx

X0

; (18)
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where X0 denotes the radiation length [20] and L the so-called radiation logarithm with its correction

term [21].

The di�usion equation for Moli�ere angular distribution becomes [8, 9]

df =
N

A
dx

ZZ
ff(~� � ~�0)� f(~�)g�(~�0)d~�0: (19)

Under the azimuthally symmetrical condition, Hankel transforms of Eq. (19) becomes

d ~f = �2�
N

A
~fdx

Z 1
0

[1� J0(��)]�(�)�d�

= �
E2
s

2L

z2dt

p2v2
~f

Z 1
p
e�a

[1� J0(��)]�
�3d�; (20)

where t denotes the traversed thickness measured in radiation unit:

t � x=X0: (21)

Evaluating the integration using the formula (14) of Bethe [3], we get the following di�erential equation

�
d

z2dt
ln ~f =

E2
s

8L

�2

p2v2
[1 + ln 2� C � ln(

p
e�a�)]

=
E2
s

4L

�2

4p2v2
[1� 2C + ln

�2E2
s =(4Lp

2v2�20)

[�2a=�
2
0]rel

� ln
�2�2a=�

2
0

[�2a=�
2
0]rel

� ln(
E2
s

4L

�2

4p2v2
)]; (22)

where we introduced the angular constant �0 [3] called the Born screening angle [22],

�0 = �h=(ap); (23)

and [�2a=�
2
0]rel denotes the value of �

2
a=�

2
0 for electrons of high energy limit.

Now we de�ne the Kamata-Nishimura constants as


� ln
 = 1� 2C + ln
E2
s =(4Lp

2c2�20)

[�2a=�
2
0]rel

; (24)

K2 =
E2
s

4L

; (25)

then 
 and K are constants speci�c to the substance. It can be easily con�rmed that these de�ni-

tions agree with (A.3.26) and (A.3.28) of Nishimura de�ned in the relativistic condition [9]. We also

introduce the factor

�02 =
�2a=�

2
0

[�2a=�
2
0]rel

�2; (26)

re
ecting the velocity of penetrating particle and the di�erence between the characteristic screening

angle and the Born screening angle.

Then the di�usion equation becomes

�
d

z2dt
ln ~f =

K2




�2

4p2v2
[
� ln
� ln(

K2




�02�2

4p2v2
)]; (27)

so that we get

d

z2dt
ln ~f = �

�2

w2
[1�

1



ln
�02�2

w2
] where w = 2pv=K: (28)

Many authors evaluated �a and �0 respectively in their multiple scattering theories, depending

on their models of screening potential. We listed in Table 1 some screening models adopted by

representative authors of multiple scattering theory.
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Table 1: Screening potentials adopted by representative authors. V (r), a, �0, �a denote screening potential,

atomic radius, Born screening angle, and the characteristic screening angle, respectively. Bohr radius and the

Born parameter, a0 = �h2=me2 and � = zZ=137�, are used in the table.

Author V (r) a �0 �a

Goudsmit-Saunderson Ze2

r
exp(�r=a) a0Z

�1=3 �h=(ap) �0

Moli�ere zZe2

r
!(r=a) 0:885a0Z

�1=3 �h=(ap)
p
1:13 + 3:76�2�0

Snyder-Scott Ze2

r
exp(�r=a) a0Z

�1=3 �h=(ap) �0

5 Evaluation of Kamata-Nishimura Constants for Pure Substances

5.1 Moli�ere screening model

If we adopt the Moli�ere screening model [1], we get the equations for 
 and K as


� ln
 = 1� 2C + ln
1373�(0:885Z�1=3)2

(1:13 + 3:76Z2=1372)L
; (29)

K2 =
E2
s


4L
: (30)

Using the value of radiation length X0 [23] of

1

X0
=

4N

137A
Z(Z + 1)r2eL (31)

instead of L, we can determine 
 and K consistent with widely-used table of material constants

indicated by Particle Data Group [24]:


� ln
 = ln
6680(Z + 1)Z1=3X0

(1 + 3:34Z2=1372)A
; (32)

K2 = 3:49 � 10�4
Z(Z + 1)

A
X0
E

2
s : (33)

In this case Kamata-Nishimura equation becomes

d

z2dt
ln ~f = �

�2

w2
[1�

1



ln
�02�2

w2
] where �02 =

1 + 3:34z2Z2=(137�)2

1 + 3:34Z2=1372
�2: (34)

Kamata-Nishimura constants so obtained are listed in Table 2.

5.2 Other simple models which do not distinguish the characteristic screening

angle from the Born screening angle

According to Goudsmit and Saunderson [25], Snyder and Scot [26], and Rossi [20], they do not

distinguish the characteristic screening angle from the Born screening angle;

�a = �0: (35)

In those cases, it satis�es

�0 = �; (36)
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Table 2: Kamata-Nishimura constants 
 and K for pure substances derived from the Moli�ere screening model,

together with those (embraced) from the simple model of �a = �0.

Material Z A X0 
 K

g/cm2 MeV

H 1 1.008 61.28 16.40(16.54) 17.69(17.76)

He 2 4.003 94.32 16.07(16.20) 18.88(18.96)

Li 3 6.941 82.76 15.80(15.93) 18.83(18.91)

C 6 12.011 42.70 15.34(15.48) 18.96(19.04)

N 7 14.007 37.99 15.25(15.39) 19.06(19.15)

O 8 15.999 34.24 15.17(15.31) 19.15(19.24)

Al 13 26.982 24.01 14.85(15.02) 19.43(19.53)

Si 14 28.086 21.82 14.80(14.97) 19.47(19.58)

S 16 32.066 19.50 14.71(14.89) 19.54(19.66)

Ar 18 39.948 19.55 14.63(14.82) 19.60(19.73)

Fe 26 55.845 13.84 14.34(14.60) 19.79(19.96)

Cu 29 63.546 12.86 14.25(14.53) 19.84(20.03)

Br 35 79.904 11.42 14.08(14.42) 19.94(20.19)

Ag 47 107.868 8.97 13.77(14.25) 20.13(20.48)

I 53 126.904 8.48 13.62(14.19) 20.22(20.63)

W 74 183.840 6.76 13.15(14.02) 20.52(21.19)

Pb 82 207.200 6.37 12.99(13.97) 20.65(21.42)

so that we get the Kamata-Nishimura constants from


� ln
 = 1� 2C + ln
1373�(0:885Z�1=3)2

L
; (37)

K2 =
E2
s


4L
; (38)

or by using X0 we get


� ln
 = ln
1:13 � 6680(Z + 1)Z1=3X0

A
; (39)

K2 = 3:49 � 10�4
Z(Z + 1)

A
X0
E

2
s : (40)

This time, Kamata-Nishimura equation becomes

d

z2dt
ln ~f = �

�2

w2
[1�

1



ln
�2�2

w2
]: (41)

Kamata-Nishimura constants obtained in this case are tabulated in Table 2, embraced by brackets.

6 Angular Distribution of Charged Particles Traversing Through

Mixed or Compound Substance

The di�usion equation for the angular distribution of charged particles is described as

d ~f = �
�2

w2
~f(1�

1



ln
�02�2

w2
)z2dt; (42)

in the Fourier space. So the increase of Fourier component in the di�erential passage becomes
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�d ln ~f =
1

X0w2
(1�

1



ln
�02

w2
)�2z2dx�

1

X0w2

(�2 ln �2)z2dx: (43)

In case of charged particles traversing through mixed or compound substance, the coe�cients appear-

ing in the right-hand side changes discontinuously corresponding to the atoms they encounter. So we

take the value of coe�cient as the expectation value of it. Thus we get

� ln 2� ~f = �2
Z x

0
Pr[

1

X0w2
(1�

1



ln
�02

w2
)]z2dx� �2 ln �2

Z x

0
Pr[

1

X0
w2
]z2dx; (44)

where the expectation value is taken as the weighted mean value by the fractions of mass:

Pr[Q] �
X
i

piQi: (45)

thus

~f =
1

2�
expf��2

Z x

0
Pr[

1

X0w2
(1�

1



ln
�02

w2
)]z2dx+ �2 ln �2

Z x

0
Pr[

1

X0
w2
]z2dxg: (46)

So using the translation formula indicated in the Appendix, we get the angular distribution charac-

terized by the expansion parameter B of

B � lnB =

Z x

0
Pr[

1

X0w2
(1�

1



ln
�02

w2
)]z2dx=

Z x

0
Pr[

1

X0
w2
]z2dx+ ln

Z x

0
Pr[

1

X0
w2
]z2dx (47)

and the unit of Moli�ere angle

�M = 2

s
B

Z x

0
Pr[

1

X0
w2
]z2dx: (48)

If we assume homogeneous mixture of substances, integration of the expectation value along the

thickness should become Z x

0
Pr[f(x)]dx = Pr[

�XR

XR

Z x=( �XR=XR)

0
f(x)dx]; (49)

where XR denotes the range of particle measured in g/cm2,

XR � E0=
dE

dx
and �XR � E0=Pr[

dE

dx
]; (50)

In case of �0 � �, which is realized for singly charged particles of relativistic condition or charged

particles penetrating through light substances in such a condition as zZ � 137�, we have

�d ln ~f = f
K2

X0
(1�

1



lnK2)

�2

4p2v2
�

K2

X0


�2

4p2v2
ln

�2�2

4p2v2
gdx: (51)

Thus

� ln 2� ~f =

Z x

0
Pr[

K2

X0
(1�

1



lnK2)]

�2

4p2v2
dx�

Z x

0
Pr[

K2

X0

]
�2

4p2v2
ln

�2�2

4p2v2
dx: (52)

If we introduce the reduced Kamata-Nishimura constants for mixed or compound substance, �
 and
�K, from the equations

�K2

�X0

(1�
1
�

ln �K2) = Pr[

K2

X0
(1�

1



lnK2)]; (53)

�K2

�X0
�

= Pr[

K2

X0

]; (54)
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Table 3: The reduced Kamata-Nishimura constants, �
 and �K, for mixed or compound substances derived from

the Moli�ere screening model, together with those (embraced) from the simple model of �a = �0.

Material �X0
�
 �K

g/cm2 MeV

Air 36.61 15.21(15.35) 19.10(19.19)

SiO2 27.04 14.95(15.11) 19.34(19.44)

H2O 36.02 15.23(15.37) 19.06(19.15)

LiH 79.24 15.88(16.02) 18.65(18.73)

Emulsion 11.32 13.94(14.36) 20.01(20.31)

then, taking �X0 as the radiation length for the compound substance [20], we get

�
� ln �
 = Pr[
K2

X0

(1�
1



lnK2)]=Pr[

K2

X0

] + lnPr[

K2

X0

] + ln �X0; (55)

�K =

s
�X0
�
Pr[

K2

X0

]: (56)

In this case we can get the Moli�ere angular distribution for mixed or compound substances by regard-

ing they are pure materials with the reduced Kamata-Nishimura constants, �
 and �K. So that the

distribution is determined by the expansion parameter B and the unit of Moli�ere angle �M derived

from

B � lnB = �
� ln �
 + ln(�z2t=�2) and �M = ��G

q
B=�
; (57)

where ��G is derived from Eq. (14) with 
 andK replaced by �
 and �K. The reduced Kamata-Nishimura

constants, �
 and �K, for mixed or compound substance are tabulated in Table 3. The distribution for

mixed or compound substances can also be got by the reduced constants in case we can neglect energy

loss or in case assuming simple screening model of �a = �0.

By using the reduced constants, we can slightly simplify Eqs. (47) and (48) for general energy

conditions, as

B � lnB =

Z x

0
Pr[

1

X0w2
(1�

1



ln
�02

w2
)]z2dx=

��2G
4�


+ ln
��2G
4�


(58)

and the unit of Moli�ere angle

�M = ��G

q
B=�
: (59)

In general energy conditions we should get exact B and �M from the above equations. But in

practical use, the approximation to regard the mixed or compound substance as a pure one with the

reduced Kamata-Nishimura constants will be available. The results of exact B and �M are compared

with those from the approximate method for nuclear emulsion in Figs. 5 and 6. We used Pr[Z] for

the charge number in the approximate method. We cannot observe almost any di�erences.

7 Conclusions and Discussions

Kamata-Nishimura formulation of the Moli�ere theory, having been described for electrons of

relativistic condition, is reconstructed to be valid in the general energy range and to wider variety of

charged particles irrespective of mass and charge. Moli�ere theory is simply described in the Kamata-

Nishimura formulation by an ordinary di�erential equation of Fermi-Yang type in the Fourier space,

possessing the two Kamata-Nishimura constants speci�c to the substance. We can obtain the Moli�ere
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distributionmuch easily, moreover improve Moli�ere angular distribution to take into account ionization

loss, by the formulation. The Kamata-Nishimura constants are recalculated so that they should be

consistent with the widely-used material constants of Particle Data Group [24] and are tabulated in

Table 2.

The method to obtain the angular distribution for charged particles traversing through mixed or

compound substance is investigated on the Kamata-Nishimura formulation. In general, Moli�ere dis-

tribution in the substances can be obtained by taking the expectation values for coe�cients in the

equation as the weighted mean values by the fraction of mass. In case of e.g. �xed energy approxi-

mation, traversing through light substances, or assuming other simple screening model than Moli�ere,

we can regard the mixed or compound substance as a pure one with the reduced Kamata-Nishimura

constants listed in Table 3. Approximated method to apply the reduced constants even in general

cases have shown good accuracies in so far from our restricted investigations.

The present formulation will be valuable in cross check for other theoretical works or simulation

results as a scarce multiple scattering theory with ionization. Examinations by and applications to

experiments will also be followed using the Particle Telescope of Okayama University [28].
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Appendix

We show a translation formula between the Kamata-Nishimura formulation and the Moli�ere-Bethe

one. Let the image function by Kamata-Nishimura be of a form [27]

~f =
1

2�
expf�a�2 + b�2 ln(c�2)g: (60)

If we new de�ne the expansion parameter B and the composite transform-variable u, as

B � lnB =
a

b
� ln

c

b
and u = 2�

p
bB; (61)

then we get the well known Moli�ere form

~f =
1

2�
expf�u2

4
(1� 1

B
ln

u2

4
)g: (62)

So that the probability density can be represented in the Moli�ere series of

f(#) = f (0)(#) +B�1f (1)(#) +B�2f (2)(#) + : : : ; (63)

where the Moli�ere angle is de�ned by the new unit,

# = �=�M with �M = (2
p
bB): (64)
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Figure 1: Angular distributions multiplied by �2 at

depth t=(E0=") of 0.1, 0.3, 0.5, 0.7, and 0.9 from left

to right. Dot lines indicate accumulations of single

scatterings.
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Figure 2: Variation of the scale factor � against t. Ab-
scissa means t=(E0="). The curves correspond to inci-

dent energies E0=(mc2) of 10, 20, 50, and 1.
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Figure 3: Depth-variation of B for various incident en-

ergies, E0=" of 10, 102, 103, and 104 in unit of 
e�
,
from left to right. Thin line indicates traditional B for

�xed energy.
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Figure 4: Depth-variation of �M for various incident

energies, E0=" of 10, 10
2, 103, and 104 in unit of 
e�
,

from left to right. Thin line indicates traditional �M for

�xed energy.

100 102 104
0

5

10

TRAVERSED THICKNESS   t/(Ωe–Ω)

E
X

P
A

N
S

IO
N

 P
A

R
A

M
E

T
E

R
   

B

Emulsion
mc2/E0 = 1/20

exact results

approx. results

Figure 5: Comparison of B for mixed or compound

substance, between exact results and approximated

ones. Four curves correspond to E0=" of 10, 102, 103,

and 104 in unit of 
e�
, from left to right.
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and 104 in unit of 
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