

## もくじ

- ・ 簡易遮蔽計算コードレビューWGの活動
   POKER(点減衰核積分法)
- ベンチマーク実験の概要
- PHITS による解析結果
   [Counter] 機能 を用いた解析
- まとめ

#### WG の活動 日本原子力学会 放射線工学部会 「簡易遮蔽計算コードレビューWG」 (第1期) (簡易遮蔽解析コードレビューWG),2016.01~ • 第3期,2020.02~ (連携) 放射線安全規制研究戦略的推進事業 「ICRP 2007年勧告等を踏まえた遮蔽安全評価法 の適切な見直しに関する研究」 POKER • 第4期,2023.05~ (添付図書) 「原子力第一船むつ遮蔽透過実験ベンチマーク解析」

### POKER の紹介

## (国産の簡易遮蔽計算コード!!) POKER 光子 (ガンマ線)の簡易遮蔽計算コード

Shielding Dose Calculation Code with Point Kernel Techniques

#### 最新のICRP勧告とデータに基づく光子の遮蔽計算

・最新の線量換算係数、同位体放射線データ、30MeVまでの光子・原子相互作用データ

#### 放射線施設の遮蔽計算と許可申請・届出を行う人のために

原子力規制庁の規制研究を通じた監修
 放射線安全規制研究戦略的推進事業費(ICRP2007年勧告等を踏まえた遮蔽安全評価法の適切な見直しに関する研究)

PointKernel.com

#### 純国産100%

 日本原子力学会放射線工学部会簡易遮蔽計算WG 国立研究開発法人のガチ遮蔽研究者 原子力・放射線施設の遮蔽設計・申請を担う遮蔽実務家 遮蔽計算を熟知した本職プログラマー

> POKER Community





## ベンチマーク解析 (PHITS)

- Benchmark study of particle and heavyion transport code system using shielding integral benchmark archive and database for accelerator-shielding experiments, J. Nucl. Sci. Technol. 59 (2022).

\* HSS06 : Hadronic Shower Simulation Workshop, 2006

XX Benchmark of Spallation Models (IAEA)

5

## ベンチマーク解析を行う上で 計算体系を詳細かつ正確に造る! PHITS によるシミュレーションとは、 ヴァーチャルな世界 に実験体系を構築し、 体系内での放射線の振る舞いを観察する。 • "if" が実現できる世界を堪能しましょう。 [Counter] 機能 を用いた解析

6









緑源の 位直・放出角度: 炉心 → 実験孔の炉心側、<u>±20度</u> モンテカルロ法らしさを 失わないように! 10

## 計算結果(C/M)

全光子(散乱光子込み)
 PHITS による計算結果(C)は、測定結果(M)に対して 10%以内でよく一致した。(重コン 100 cm を除く。)
 一方で、非散乱光子は、・・・

|          |       | 測定結果(M)                     |          | PHITS 3.20 (C)              |          | C/M                         |      |
|----------|-------|-----------------------------|----------|-----------------------------|----------|-----------------------------|------|
|          | 厚さ    | 非散乱光子                       | 全光子      | 非散乱光子                       | 全光子      | 非散乱光子                       | 全光子  |
|          | (cm)  | Unscattered / Total photons |          | Unscattered / Total photons |          | Unscattered / Total photons |      |
| 遮蔽体: 無   | 0     | 1.0                         | 1.0      | 1.0                         | 1.0      | 1.00                        | 1.00 |
|          | 25.2  | 1.06E-01                    | 2.39E-01 | 1.18E-01                    | 2.36E-01 | 1.11                        | 0.99 |
| 遮蔽体:     | 50.1  | 1.48E-02                    | 4.56E-02 | 1.62E-02                    | 4.42E-02 | 1.10                        | 0.97 |
| 普通コンクリート | 75.3  | 2.13E-03                    | 9.19E-03 | 2.57E-03                    | 8.24E-03 | 1.21                        | 0.90 |
|          | 100.5 | 3.43E-04                    | 1.81E-03 | 4.65E-04                    | 1.68E-03 | 1.35                        | 0.93 |
|          | 125.4 | 5.70E-05                    | 3.78E-04 | 8.71E-05                    | 3.40E-04 | 1.53                        | 0.90 |
|          | 25    | 3.52E-02                    | 9.26E-02 | 3.94E-02                    | 9.68E-02 | 1.12                        | 1.05 |
| 遮蔽体:     | 50    | 2.17E-03                    | 7.64E-03 | 2.25E-03                    | 7.74E-03 | 1.04                        | 1.01 |
| 重コンクリート  | 75.1  | 1.33E-04                    | 6.82E-04 | 1.42E-04                    | 6.24E-04 | 1.07                        | 0.91 |
| l        | 100.1 | 7.11E-06                    | 6.04E-05 | 1.01E-05                    | 5.09E-05 | 1.42                        | 0.84 |





#### まとめ

 
 ・ 簡易遮蔽計算コードレビューWGの活動の一環
 として、光子の「コンクリート透過実験」を対象とし たベンチマーク解析を実施した。 (この報告書は、近日公開予定です。) 計算結果は、測定結果をよく再現した。 (±10%) • **PHITS**の妥当性検証(Validation)は、こ れまでも数多く行われてきているが、今後も皆さま のご協力をお願いします。

# おしまい

## ご清聴ありがとうございました。

## 補足資料

16



Pulse height distribution

 → <sup>1</sup>/<sub>2</sub> + 400 m 逆マトリクス法 で変換



#### Energy spectrum



#### 線源に関する課題

#### Energy spectrum





#### 鉄の捕獲ガンマ線? (6 MeV付近や7.6 MeV)

ただし、 燃料: U-AI 合金 (AI) 反射体: 黒鉛 (AI) 制御板: ボロン入り ステンレス鋼 18



