電子の物質中での輸送計算

▶ 相互作用

- ▶近似
- ▶ 輸送方法

(KEK) 波戸、平山 (ミシガン大) A.F.Bielajew

Last modified on 2022.8.8

電子の相互作用と輸送の概要

電子が物質中に入射された時の相互作用

原子核による電子の散乱
 ラザフォード散乱:方向を変える

電子と(軌道)電子の衝突
 エネルギーを失う

3. 制動放射の発生

4. 電子・陽電子の対消滅

物質中での電子のエネルギー変化(阻止能)

物質中での電子のエネルギー変化(阻止能)

電子輸送の近似

現実

平均自由行程 μm-nm オーダー <u>全ステップの計算は不可能</u>

連続減速近似 しきいエネルギー以上のみサン プリングする

モリエール理論などで 多重散乱角 $\theta_{MS}(E, Z, t)$ を計算

個別にサンプリングするもの

- しきいエネルギー以上の2次粒子を生成する反応
- モラー/バーバー散乱 (2次粒子エネルギー > AE)
- 制動放射 (光子エネルギー > AP)
- 飛行中および静止時の陽電子の対消滅
- 連続近似でまとめて計算するもの
 - モラー/バーバー散乱 (2次粒子エネルギー < AE)
 - 制動放射 (光子エネルギー < AP)
 - 原子励起
 - (多重) クーロン散乱

▶(エネルギー損出/吸収)

個別にサンプリングする相互作用

ファインマン図

- 断面積 は Z² に比例 (原子核との場合)
- 軌道電子による寄与は、全断面積の計算 では考慮する
 - $Z^2 \rightarrow Z(Z + \xi(Z))$
 - スペクトルや角度分布のサンプリング では考慮しない
- 50 MeV以上:理論式でサンプリング
- 50 MeV以下:データ(ICRU-37)を利用
- 陽電子も同様に計算
- Thomas-Fermi 遮蔽
- ミグダル効果 >10 GeV (オプション)

電子・陽電子散乱

● e-は自由

• EGS5 での詳しい扱い (オプション)

▶断面積はZに比例 ▶モラー散乱におけるK-X 線生成

(電子衝突電離。診断で使われるX線管のシミュレーション等で重要)

$$(E_0 + m_e c^2 = k_1 + k_2)$$

- •飛行中、静止時ともに扱う
- e+e-→nγ (n > 2) は無視
- ECUT 以下で e+ 停止 → 対消滅
- •残った励起原子の寄与は無視
- 束縛状態(ポジトロニウム)の
 効果は無視

統計的にグループ化して扱う相互作用

• 連続的なエネルギー損失

エネルギー損失

1. <u>衝突エネルギー損失</u>

- ベーテ・ブロッホ理論 + <u>密度効果</u>
- ・電子と陽電子では異なる(モラー vs バーバー)
- 通過する物質内の電子のイオン化することでエネルギーを損失
 - ➡ 損失量は、物質内の電子数密度に比例
 - 電子エネルギーが K 殻のイオン化エネルギーより十分に上

2. 放射エネルギー損失

- 高エネルギー電子・陽電子に対して重要
- ・制動放射の微分断面積を、しきいエネルギー (AP) 以下で積分し て決定
- ・電子と陽電子で同じ

入射電子により物質が分極し、衝突阻止能が減少

密度効果の阻止能への影響

EGS5 での密度効果

- Berger, Seltzer, and Sternheimer
 278 物質のパラメータを内蔵
- Sternheimer and Peierls
 - ▶ 一般的扱い
 - Z と ρ のみを用いる
 - ・正確さは少し劣る(全阻止能誤差<2%)

物質が吸収するエネルギー

 e^{\pm} が「t」だけ動くときのエネルギー吸収の期待値 = $\left[-\left\langle \frac{dE}{dx} \right\rangle_{m_{\mathcal{B}}} - \left\langle \frac{dE}{dx} \right\rangle_{by} \right] \times t$

(しきいエネルギー以下の現象による阻止能)

吸収線量 (Gy) = エネルギー吸収(J)/質量(kg)

エネルギーストラグリング → ランダウ分布 or ガウス分布

PDF (Θ) = ?: *t* だけ移動した後の多重散乱角分布

- モリエールの小角長ステップ理論 (EGS4, PRESTA, EGS5)
- Goudsmit-Saunderson 理論 (EGS5)
- Fermi-Eyges 理論

Moliere 理論 (中精度、中制限、簡単)

- デフォルト
- 散乱角 Θ を変数 (E, Z, t) に依らない
 "換算角" θ と関係付けている
- $f^{(n)}(\theta)$ で θ をサンプリング $\rightarrow \Theta$ を 得る
- 小角度 (< 20) で良い近似
- 長い *t* が必要 (> 100 elastic MFP)

- ルジャンドル関数で散乱断面積を展開
- •係数 $f(E, Z, t, \theta) \rightarrow$ 大きなデータベースが必要
- すべての散乱角で正確

ステップ内での輸送

EGS5のステップ内輸送機構(2)

- - エネルギー損失を考慮するため.
- "エネルギー損失ヒンジ"を導入し、K₁を求めるためのG₁の 積分を単純化
 - エネルギー損失ヒンジ間でエネルギーは不変

詳細:THE EGS5 CODE SYSTEM

https://rcwww.kek.jp/research/egs/egs5_manual/slac730-160113.pdf

 "Characteristic dimension"を導入し、適切な ステップ長の設定を容易に。

電子の輸送方法の代表的な"クラス"

クラスII (EGS, Penelope) クラスI (ITS, MCNP) t: 固定長さ(最大エネルギーの関数) *t*: 物理的な断面積に従いサンプリング 現実的な1事象の全体をシミュレートできる E_0 E_{s} $E_{\delta,\gamma}$ $E = E_0 - \Delta E(t)$ $E = E_0 - t (dE/dx) - E_{\delta, y}$ $E_{\rm dep} = \Delta E(t) - E_{\delta}$ $E_{\rm dep} = t \left(\frac{dE}{dx} \right)$

ΔE(t): エネルギー損失ストラグリング分布から
 サンプリングしたエネルギー損失

dE/dx:しきい値で決まる制限付き阻止能

電子の輸送方法の代表的な"クラス"

電子輸送モデルの比較

コード	散乱過程	M.S.モデル	Class	ステップ内輸送機構
EGS5	Rutherford	Moliere	2	Dual Hinge Characteristic dimension
	Mott	GS		
EGSnrc	Mott	GS	2	1回散乱の分離
Penelope	Mott	GS	2	Dual Hinge 大角散乱の分離
ITS 3.0 #	Mott	GS	1	

Adopted as electron transport of MCNP

光子と電子の反応対象 単一の原子、電子、原子核 例外 密度効果における分極

- レイリー散乱における原子間の干渉