Japan-Korea Joint Summer School on Radiation Science and Engineering Kitakyusyu International Conference Center (15 Jul 2009)

EGS code and reaction between electrons and photons

Y. Namito (KEK)

Last modified on 2009.7.9

History of EGS system

Period	Program	Languag e	Authors
1963~1965	SHOWER1	Fortran	Nagel
1966	SHOWER2	Fortran	Nicoli
1967~1972	SHOWER3/PREPRO	Fortran	Ryder, Talwar, Nelson
1970~1972	SHOWER4/SHINP	Fortran	Ford
1974	EGS1/PEGS1	Fortran	Ford, Nelson
1975	EGS2/PEGS2	Mortran 2	Ford, Nelson
1976~1977	EGS3/PEGS3(SLAC-210)	Mortran 2	Ford, Nelson
1982~1985	EGS4/PEGS4(SLAC-265)	Mortran 3	Nelson, Hirayama, Rogers
2006	EGS5(SLAC-R-730 and KEK Report 2005-8)	Fortran	Hirayama, Namito, Bielajew, Wilderman and Nelson

About EGS

- Monte Carlo particle transport simulation code.
- Interaction of electron and photon with matter.
- Energy range: $10^3 \text{eV} 10^{12} \text{eV}$.
- EGS5: Released in 2006. Authors: Hirayama, Namito, Bielajew, Wilderman, and Nelson.
- Runs on Linux, Cygwin and Windows-PC.
- Combinatorial geometry is available.
 - Geometry check program (CGVIEW) is available.
 - Separation of geometry and other preparation.
- Transport in EM field.

Combinatorial Geometry CG

 Specify BODY using parameters.
 Specify ZONE by operation (AND, OR, OUTSIDE) of bodies.
 Specify material for ZONE

What is interact with photon and electron ? Whole One Atom? Electron? Nucleus?

Photon Monte Carlo Simulation

Photon Interaction with Matter

Photoelectric effect

Rayleigh scattering

Pair Production

Feynman diagram

- Interact in the field of a nucleus
- •Annihilate and produce e⁺ e⁻ pair
- triplet distribution ignored,
- incl. in total $\sigma_{\rm pair}$

- sketch
- PHOTX CS
- default $\theta = m_0 c^2/k_0$
 - Realistic angle. dist.: optional

Pair Production (Cont')

Compton scattering

Compton scattering (Cont')

Optional treatment in egs5

- Binding effect (0 @ $k \rightarrow 0$)
- Doppler Broadening
 •e⁻ pre-collision motion
- Linearly polarized photon scattering

Double Differential Compton Cross Section

Cu,40 keV(EGS4+LP+DB=EGS5)

Effect of Doppler to Ge detector response

Guadala,Land&Price's exp

Photoelectric effect

Photoelectric effect (Cont')

Relaxation of atom (option in egs5)

- Fluorescent X ray and Auger electron from K and L shell

Photon spectrum from Pb target EGS4 (General Treatment of PE) = EGS5

Rayleigh Scattering

- elastic process
- independent atom approx.

Rayleigh Scattering (Cont')

Optional treatment in egs5

• Interference effect between nearby atoms

• Linearly polarized photon scattering

Total photon $\Sigma vs \gamma$ -energy

End of Photon Monte Carlo Simulation

Electron Monte Carlo Simulation

Electron interaction with matter

Electron scattering by nucleus
 (Rutherford scattering): Change direction

2. Inelastic scattering of electron and electron: Loose energy

3. Generation of bremsstrahlung x ray

Condensed Random Walk

In Reality, mean free path is in nm or μ m unit.

Continuous slowing down δray, brems: Treated only if, 2nd particle energy > threshold

Multiple scattering

M.S. Angle $\theta_{ms}(E,Z,t)$ Moliere theory GS theory How do we treat both hard interaction and continuous approximation consistently?

Use Threshold energy (AE, AP) by User's choice

- "Hard" interaction: Discrete sampling
 - –large ΔE Moller/Bhabha (2nd particle energy>AE)
 - -large ΔE bremsstrahlung (photon energy>AP) -annihilation "in flight" & at rest
- "Soft" interaction
 - -small ∆E Moller/Bhabha
 - -atomic excitation
 - -soft bremsstrahlung
 - -multiple e [±] Coulomb scattering

Energy Absorption

Hard Interaction

Bremsstrahlung

- •Z² scaling
- •3 body angular dist'n ignored

• $Z^2 \rightarrow Z(Z + \xi(Z))$

- •<50 MeV Normalize to ICRU-37
- •>50 MeV ERL
- •Migdal ignored >10 GeV
- •TF screening
- $\bullet e^{-}$, e^{+} treated as same
- • e^{\pm} not deflected

Bhabha

e⁺, E₂' e⁻, E₁' e⁺, E₂'

Lime

Place

 e^{-}, E_{1}' , e^{-}, E_{2}' , e^{-}, E_{1}'

identical particles

- threshold 2(AE-RM)
 - goes like 1/v²
 - scale like Z
 - Target e⁻ is "free"

different particles

- threshold AE-RM

Optional treatment in EGS5

- K-X ray production in Moller (Electron Impact Ionization)

Annihilation

- in flight and at rest
- $e^+e^- \rightarrow n \gamma$ (n>2) ignored
- $e^+e^- \rightarrow \gamma N^*$ ignored
- at ECUT e⁺ annihilates
- Residual drift is ignored

• no binding

Statistically grouped interactions (Soft Interaction)

- Continuous energy loss
- Multiple scattering

"Continuous" energy loss

- 1. collisional energy loss (e^{\pm} different)
 - 1. Bethe-Bloch theory density effect
 - 2. well-above K shell energy
 - 3. many electron atoms ∞ Zav
- 2. radiative energy loss (e^{\pm} treated same)
 - 1. integration of bremsstrahlung cross sections
 - 2. same approximations
 - 3. e^+ , e^- treated as identical

Reduction of the collision stopping power due to the polarization of the medium by the incident electron.

Density effect (2)

Density effect in egs5

- Berger, Seltzer, and Sternheimer
 - Parameters for 278 materials
- Sternheimer and Peierls
 - general treatment
 - Less precise, Needs only Z and ρ

Electron stopping power (unrestricted)

Energy absorption

energy absorption for e^{\pm} transport of *t*

Mean energy loss from Gaussian distribution Needs Landau's distribution for thin geometry Absorption Dose (Gy) = Energy absorption (J) / mass(kg)

Multiple Scattering

 $f(\theta)=?$: after path length t

- Fermi-Eyges theory
- Goudsmit-Saunderson theory: EGS5
- Moliere's small angle large pathlength theory:EGS5

Moliere theory (Middle precision, Middle restriction, Simple)

- Convert scattering angle 2.4 $f^{(O)}(\theta) = 2e^{-\theta^2}$ Θ (E,Z,t) to reduced angle θ 1,6 • Use single set of $f^{(n)}(\theta) \rightarrow \text{Simple}$ • Good for small angle (<20°) 0.8 f⁽¹⁾(0) • Needs long t (>100 elastic mfp) 0 $f^{(2)}(\theta)$ $\mathfrak{f}^{(2)}(\theta)\,\theta^6$ -0.8 15 △ is extrapolated using 2.424which fits at θ = 8, 10 exactly -1.6 12 14 16 18 2 8 10 0 4 6 3330CH Goudsmit-Saunderson (GS) theory (High precision, Little restriction, Cumbersome)
 - Expand scattering CS by Legendre function
 - Coefficient f (E, Z, t, θ) \rightarrow Need large Data Base
 - Good for all scattering angle without restriction

Concept figure for single scattering and multiple scattering

Electron transport in EGS5

- Elastic scattering cross section
 - Rutherford CS (Default)(=EGS4)
 - Coulomb interaction between nucleus and electron. Nucleus is treated as a point.
 - Mott CS
 - Consider spin relativistic effect
- Multiple scattering
 - Moliere theory (Default)(=EGS4)
 - Goudsmit-Saunderson theory (GS)
- Transport mechanics inside m.s. step
 Dual Hinge

Transport Mechanics inside step

Transport mechanics inside m.s. step of EGS5 (1) Developed at U.Mich and U.Barcelona

- Sampling m.s. step s

 (straight step size)
 Evaluate curved length (t), scattering angle (τ)
 and lateral displacement
 (Δx²+Δy²)
 - Sampling multiple scattering hinge point inside curved length t
- 2. Change electron direction at that point based on m.s. model

 $< t/s > and < \Delta x^2 + \Delta y^2 > are$ adequately calculated in this hinge model as long as energy loss is ignored.

Transport mechanis inside m.s. hinge in EGS5 (2)

• Instead of hinge model of ζt and $(1-\zeta)t$, hinge model based on scattering strength is used. $\zeta K_1(t)$ and $(1-\zeta)K_1(t)$.

– To account for energy loss.

• Introduce "Energy loss hinge" to simplify integral of G_1 to evaluate K_1 .

- Energy is constant between energy loss hinge.

• Introduce "Characteristic dimension" to make setting of adequate step length easy.

Simple

Accurate

Class I (ITS,MCNP) Energy loss without correlation

Class II (EGS,Penelope) Energy loss with correlation

- $\Delta E(t)$: energy loss sampled from energy loss distribution (Straggling considered)
- L_{col}^{AE} : restricted stopping power for 2nd particle (<AE)

t : Fixed length (Function of Max energy) @ITS, Variable @ EGS, Penelope

Comparison of Electron transport model

Code	Spin	M.S. model	Class	Transport mechanism in step
EGS5	×	Moliere	2	Dual Hinge
	0	GS		Characteristic dimension
EGSnrc	0	GS	2	Separate single scatt.
Penelope	0	GS	2	Dual Hinge Separate large θ scatt.
ITS 3.0 [#]	0	GS	1	

Adopted as electron transport of MCNP

Photon and electron interact with Whole One Atom, Electron, and Nucleus Exception – Density effect

- Interference in Rayleigh scattering

Complement

- Electron impact ionzation
- Shielding of α, β, γ ray

Electron Impact Ionization (EII)

Brems. \rightarrow Photoelectric

EII

Dick et al (1973)'s exp set up

K X-ray yield for Cu

CSDA range of α and β ray

(Almost) independent of Z

Total photon $\Sigma vs \gamma$ -energy

Penetration of radiation Paper

Aluminum Plate

Lead Block

In reality, α ray and β ray range (g/cm²) or γ ray MFP is (almost) independent of Z!

End of Electron Monte Carlo Simulation