Japan-Korea Joint Summer School on Radiation Science and Engineering Kitakyusyu International Conference Center (15 Jul 2009)

Demonstration of EGS5

(KEK) Y. Namito, Y. Kirihara, M. Hagiwara, H. Iwase

Last modified on 2009.7.9

Subject 1: Attenuation of β ray

- Are β rays stopped in material? or goes through?
- What happens in the Aluminum plate?

 \rightarrow Run EGS5 and observe computer graphics

2.3 MeV β ray \rightarrow Al 1cm

Number of transit β ray

- Extract ucshield.* and shield.dat from isord5.tar.gz
- Open command prompt window
- Run egs5 by type in followings;
 - C:¥g77¥g77setup
 - cd egs5/userdir
 - egs5run ucshield
- Respond to prompt
 - Key in Material number: 1
 - Do you want to produce... : 0
 - Key in particle type: -1
 - Key in particle kinetic energy in MeV : 2.3
 - Key in slab thickness in cm : 1.0
- Run Cgview
 - File -> Read geometry -> (Move to working folder) -> Select egs5job.pic

Subject 2 Attenuation of γ ray

- Are γ rays stopped in material or goes through?
- What happens in the material?

 \rightarrow Run EGS5 and observe computer graphics

- Number of incident : 50
- Transit: Primary 24, Scattered 13; Reflection 2

1.25 MeV γ ray→Al 10cm

Transit : Primary 11, Scattered 8; Reflection 4

1.25 MeV γ ray→Al 20cm

Transit : Primary 4, Scattered 3; Reflection 1

10cm

Number of transit γ ray

- Etraxt ucshield.* and shield.dat from isord5.tar.gz
- Open command prompt window
- Run egs5 by type in followings;
 - C:¥g77¥g77setup
 - cd egs5/userdir
 - egs5run ucshield
- Respond to prompt
 - Key in Material number: 1
 - Do you want to produce...: 0
 - Key in particle type: 0
 - Key in particle kinetic energy in MeV : 1.0
 - Key in slab thickness in cm : 1.0
- Run Cgview
 - File -> Read geometry -> (Move to working folder) -> Select egs5job.pic

Subject 3 tutor codes

- Run tutor1 code (also other tutor code)
- Compare output with manual
 Relation of output and corresponding code
- Investigate specification of source particle

- Copy tutor# from egs5 folder to working folder
 # = 1,2,3,5,6,7
- Open command prompt window
- Run egs5 by type in followings;
 - C:¥g77¥g77setup
 - cd egs5/userdir
 - egs5run tutor#
- Compare output with tutor#.out
- Read tutor#.f
 - Lines for output particle information
 - Lines for source particle

Subject 4 ucbend.f

Electron transport in magnetic field

- Extract ucbend.* from isord5.tar.gz .
- Run egs5 by type in followings;
 - C:¥g77¥g77setup
 - cd egs5/userdir
 - egs5run ucbend
- Run Cgview
 - File -> Read geometry -> (Move to working folder) -> Select egs5job.pic