電子後方散乱の

モンテカルロ計算と実験の比較

総研大 桐原 陽一 KEK 波戸 芳仁、平山 英夫、岩瀬 広

背景と目的

電子後方散乱

•電磁モンテカルロコード電子輸送ベンチマークとして有用

コードが採用しているモデルの差が出やすい

•いろいろな測定法で多くの実験が行われている

実験データ間で差異が有る

実験データとコードおよびモデルの相互比較 計算モデルの改良

過去の電子後方散乱実験

測定方法

●ターゲットに電子を照射し、後方に散乱された電子を測定する

検出器 •ファラデーカップ、電離箱 Si検出器、EPMA* 入射エネルギー •4 keV \sim 14 MeV ターゲット •Be(low Z) \sim U(high Z) •厚さは半無限厚 測定量 数、エネルギー

*電子線マイクロプロープアナライザー

T.Tabata, Phys. Rev. 162, 336 (1967)

電子輸送散乱モデル

後方散乱電子の軌跡

電子の散乱モデル

電子の散乱モデル

→ 1回散乱モデルで再現できる

Rutherford 散乱

Mott 散乱

微小区間のため全てを再現するにはコスト高

電子の散乱モデル

多重散乱モデル

電子が物質を通過するとき、原子核との多 数の弾性散乱をモデル化したもの

Moliere多重散乱

- •乱数のサンプリングが単純
- •小角度(20°)以下で使用
- •すくなくとも100回以上の弾性散乱の経路長が必要

Goudsmit-Saunderson (GS) 多重散乱

- •Moliereより乱数のサンプリングが複雑
- •全散乱角に制限なしで使用
- •様々な弾性散乱断面積で使用可能
- •20 MeV以上は適用不可(数値計算が収束しない)

Moliere多重散乱とGS多重散乱の比較

スピン相対論効果を含めた散乱断面積

スピン相対論効果 (Mott散乱)

- •電子のスピン I/2を考慮
- 相対論的エネルギーでRutherford散乱を変更

Spin相対論効果の影響

エネルギーカットオフの影響

カットオフの値によって後方散乱係数が大きく変わる 全計算コードでカットオフを keVに統一

実験データと電磁モンテカルロコードの比較

電磁モンテカルロコード

- •EGS5 (Electron Gamma Shower version 5)
- •EGSnrc (Electron Gamma Shower NRC)

•PENELOPE (PENetration and Energy LOss of Positrons and Electrons)

•スペイン バルセロナ大学にて作成

•ITS 3.0

(INtegrated TIGER Series of coupled electron/photon version 3.0)

•ETRANの後継

コード	電子多重散乱モデル	スピン相対論効果
EGS5	Moliere	無
	GS	有
EGSnrc	GS 一回散乱は個別	有
PENELOPE	GS(小角) 個々に計算(大角)	有
ITS 3.0	GS	有

すべてのコードでGS、スピンあり、

cut off I keVで計算

計算方法

- •入射した電子数に対して後方へ散乱された比率
- 2%以内の統計誤差(Iσ)で計算

後方散乱係数

Moliere多重散乱にスピン相対論効果を適用

Rutherford断面積とMott断面積

Rutherford断面積

出典: R.Idoeta & F. Legarda NIM B71 (1992) 116.

スピン相対論効果を含めた散乱断面積

β→1(相対論領域)での電子180°散乱の考察

スピンの運動方向す への射影は保存量 スピン0の原子核で は、角運動量のz方 向を変える効果は ない

180°方向には散乱不可

β→1(相対論領域)での電子180°散乱の考察

スピンの運動方向す への射影は保存量 スピン0の原子核で は、角運動量のz方 向を変える効果は ない

180°方向には散乱不可

スピンの効果(Mott/Rutherford の比)

Rutherford散乱をMott散乱に補正するための係数

エネルギーが高くなるほど180°方向の散乱が減少

出典: R.Idoeta & F. Legarda NIM B71 (1992) 116.

スピンの効果(Mott/Rutherfordの比)

エネルギーが高くなるほど<mark>180°方向の散乱が減少</mark> 散乱角が大きくなると一<u>度増加し、その後減少</u>

まとめ

電子の輸送散乱モデルの比較

keV領域でMoliereとGS多重散乱に差異

•軽い元素でMeV領域にSpin相対論効果による差異

実験データと電磁モンテカルロコードの比較

•軽い元素で実験データと計算値ともに差が顕著

•重い元素ではどのコードも実験データをよく再現している

Moliere多重散乱にSpin相対論効果を適用

•BeのI MeV以上でSpin-GSとよい一致を示した

今後の方針

•重い元素におけるスピン相対論効果の理解

- •EGSにおけるSpin-GSとSpin-Moliereの計算時間の比較
- •電子輸送における各コードのモデルの理解

スピン相対論効果の適用

EGS5のMoliere多重散乱に棄却法を用いてスピン効果を適用

●乱数を振り、Mott/Ruthより小さい場合は再度多重散乱を計算

•Mott/Ruthの最大値で規格化

