## 電子後方散乱の文献調査

## 桐原 陽一

## 総合研究大学院大学 加速器科学研究科

|  | これま | で多く | の電子後方散乱 | の実験が行われている。 | 。下記にその | 一部を示す |
|--|-----|-----|---------|-------------|--------|-------|
|--|-----|-----|---------|-------------|--------|-------|

| No. | 実験者                           | 入射エネルギー<br>[MeV]  | ターゲット                                                                                                      | 測定方向                       | 検出器                              |
|-----|-------------------------------|-------------------|------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|
| 1   | Dressel[1]                    | 0.68~9.76         | Be,C,Al,Cu,Sr,Mo,Ag,Ba,W<br>,Pb,U                                                                          | 100~180° (垂直<br>入射 5 点)    | ファラデーカップ                         |
| 2   | Tabata[2]                     | 3.2~14            | Be,C,Al,Cu,Ag,Au,U                                                                                         | 100~160° (垂直<br>入射 7 点)    | 電離箱                              |
| 3   | Rester, Der-<br>rickson[3]    | 1.0               | Al,Fe,Sn,Au                                                                                                | 102.5~162.5°<br>(垂直入射 8 点) | Si(Li) 検出器                       |
| 4   | Hunger,<br>Küchler[4]         | 0.004~0.04        | $\begin{array}{l} B,C,Mg,Si,Ti,V,Cr,Fe,Co,Ni\Cu,Zn,Ge,Zr,Ag,Cd,Sn,Sb\Te,Sm,Hf,Ta,W,Pt,Au,Bi,U \end{array}$ | 後方全域                       | 電子線マイクロ<br>プローブアナライ<br>ザー (EPMA) |
| 5   | Ebert,<br>Lauzon[5]           | 4.0~12.0          | C,Al,Cu,Ag,Ta,U                                                                                            | 後方全域                       | ファラデーカップ                         |
| 6   | Neubert, Ra-<br>gaschewski[6] | $0.015 \sim 0.06$ | Be,C,Al,Ti,Fe,Cu,Nb,Ag,Ta<br>,Au,U                                                                         | 後方全域                       | ファラデーカップ <sup>1</sup>            |
| 7   | Wright,<br>Trump[7]           | 1.0~3.0           | Be,Mg,Al,Cu,Zn,Cd,Au,Pb,U                                                                                  | 後方全域                       | 熱量測定法                            |

本発表は、1~7の電子後方散乱の実験方法を調べ実験データを比較し、より信頼性のある値を 見いだすことを目的とする。図1は実験1~7のターゲット (左:Al、右:Au) での電子の入射エネル ギーによる後方散乱係数 (電子数)を示す。



図 1: ターゲット (左:Al、右:Au) 半無限厚での電子の後方散乱係数 (電子数)

- [1] R. W. Dressel, Phys. Rev. **144**, 332 (1966).
- [2] T. Tabata, Phys. Rev. **162**, 336 (1967).
- [3] D. H. Rester and J. H. Derrickson, Nucl. Inst. and Meth. 261, 86 (1970).
- [4] H. J. Hunger and L. Küchler, Phys. Stat. Sol. (a) 56, K45 (1979).
- [5] P. J. Ebert, A. F. Lauzon, and E. M. Lent, Phys. Rev. 183, 422 (1969).
- $\begin{bmatrix} 6 \end{bmatrix}$  G. Neubert and S. Rogaschewski, Phys. Stat. Sol. (a) **59**, 35 (1980).
- [7] K. A. Wright and J. G. Trump, J. Appl. Phys. **31**, 1483 (1960).

<sup>1</sup>このとき電圧をかけた二つのターゲットを用い、片方にビームを照射させ、もう一方は2次電子や壁からの散乱を測定する。この二つの電流値の差を後方散乱の値としている。