サンプルユーザーコード ucphantomgv

平山 英夫、波戸 芳仁 KEK,高エネルギー加速器研究機構

ucphantomcgv.f

- 計算課題:同じ水ファントム中での吸収線量線量の計算
- 形状:CG形状(RPP:直方体)
- 最大エネルギー100keVのX線
- モードの選択(キーボード入力)

 飛跡表示モード(CGView):egs5job.pic
 計算モード:egs5job.out
- 空気のエネルギー吸収係数を使用した後方散乱
 係数を併せて計算

Step 1:Initialization

- egs5及びpegs5で使われているcommonは、 それぞれincludeディレクトリー及び pegscommonsディレクトリーのファイル を "include"文で取り込む
- 著者から提供されたジオメトリー関係などの ユーザーコードのみで使用されるcommon は、auxcommonsディレクトリーのファイルを include文で取り込む

配列の大きさの指定

- commonで使用されている変数の配列の大きさは、 parameter文で指定
 - egs5で使用されているcommonの変数は、 include/egs5_h.f
 - ユーザーコードでのみ使用されるcommonの変数は、 auxcommns/aux_h.f
- commonと同じようにinclude文により取り込まれる。
- 配列の大きさを変更する場合は、parameter文の変数を変更する

include 'include/egs5_h.f'

include 'include/egs5_bounds.f' include 'include/egs5_brempr.f' include 'include/egs5_edge.f' include 'include/egs5_media.f' include 'include/egs5_misc.f' include 'include/egs5_thresh.f' include 'include/egs5_uphiot.f' include 'include/egs5_useful.f' include 'include/egs5_usersc.f' include 'include/egs5_usersc.f' include 'include/egs5_usersc.f'

> egs5 common に含まれる変数をメインプログ ラム等のプログラム単位で使用する場合は、 include文で当該commonを指定

include 'auxcommons/aux_h.f' ! Auxiliary-code "header" file

include 'auxcommons/edata.f' include 'auxcommons/etaly1.f' include 'auxcommons/instuf.f' include 'auxcommons/lines.f' include 'auxcommons/nfac.f' include 'auxcommons/watch.f'

include 'auxcommons/etaly2.f'

ジオメトリー関係等ユーザーコード のみで使用されるcommon

! Added SJW for energy balance

CG関係のcommonで、CGを使用する場合には常に必要(変更無し)

include 'auxcommons/geom_common.f' ! geom-common file integer irinn

In include/egs5_h.f

! Maximum number of regions allocated integer MXREG parameter (MXREG = 10649) リージョン数を増やしたい場合 には、この数値を変更する。

include/egs5_misc.f

common/MISC/

! Miscellaneous COMMON

* rhor(MXREG), dunit,

- * med(MXREG), iraylr(MXREG), lpolar(MXREG), incohr(MXREG),
- * iprofr(MXREG), impacr(MXREG),
- * kmpi,kmpo,noscat

real*8 * rhor,dunit

integer

* med,iraylr,lpolar,incohr,iprofr,impacr,kmpi,kmpo,noscat

common/totals/

* depe(20),faexp,fexps,imode,ndet real*8 depe,faexp,fexps integer imode,ndet

このユーザーコード固有 のcommon

! Variables to score

! Local variables

main programで使用する倍精度の実数

!**** real*8 real*8

* area,availke,depthl,depths,dis,disair,ei0,ekin,elow,eup,

* phai0,phai,radma2,sinth,sposi,tnum,vol,w0,wimin,wtin,wtsum,

* xhbeam,xpf,yhbeam,ypf

real*8 bsfa,bsferr,faexps,faexp2s,faexrr,fexpss,fexps2s,fexerr,

* faexpa,fexpsa

real*8

* depeh(20), depeh2(20), dose(20), dose2(20), doseun(20), ebint(201),

* nofebin(1),deltae(1),sspec(1,201),ecdft(201),saspec(201)

main programで使用する単精度の実数

```
real
* tarray(2),tt,tt0,tt1,cputime
```

main programで使用する整数

integer

* i,ii,ibatch,icases,idin,ie,ifti,ifto,imed,ireg,isam,

* ixtype,j,k,kdet,nlist,nnn,nsebin

物質名に使用する文字変数(24文字)

character*24 medarr(2)

Open文 ・ユーザーコードから、pegsを実行するのに 伴い、ユニット7-26は、pegsで close される ことから、メインプログラムで open していて も、pegs実行後に、再度 open することが必 要となる。そのため、ユニット7-26の使用を 避ける方が良い。

 ・飛跡情報を出力するplotxyz.fのユニットは、 9から39に変更

Step 2:pegs5-call

 物質データ及び各物質のcharacteristic distanceを設定した後で、pegs5をcallする。

nmed=2 medarr(1)='WATER-IAPRIM-PHOTX medarr(2)='AIR-AT-NTP-IAPRIM

pegs5で作成する物質デー タの名前。pegs5の入力 データ(ユニット24から読み 込み)と対応

```
do j=1,nmed
do i=1,24
media(i,j)=medarr(j)(i:i)
end do
end do
end do
to invoke
chard(2) = 1.0d0 ! automatic step-size control
```

Step 3: Pre-hatch-call-initialization

npreci=2 ! Pict data mode for CGView

itbody=0 irppin=0 isphin=0 irccin=0 CG関連の処理を行う部分。 itorin=0 CGを使用する場合は、変更しない。 itrcin=0 izonin=0 itverr=0 igmmax=0 ifti = 4 ! Input unit number for cg-data ifto = 39 ! Output unit number for PICT write(39,100) 100 FORMAT('CSTA') call geomgt(ifti,ifto) write(39,110)

110 FORMAT('CEND')

. ! Get nreg from cg input data

nreg=izonin

CG形状(RPP:直方体で構成)

- ファントム前の空気層
- ・ファントムの領域
- ファントム内の線量計算をする領域
- ファントム後の空気層
- 体系全体を覆う領域(計算終了の領域を定 義するために設定)

RPP	1 -15.0	15.0	-15.0	15.00	-5.0	0.00 <	─── 空気層
RPP	2 -15.0	15.0	-15.0	15.00	0.0	20.00	← ファントム
RPP	3 -0.5	0.5	-0.5	0.50	0.0	1.00	
RPP	4 -0.5	0.5	-0.5	0.50	1.0	2.00	緑童計算を
RPP	5 -0.5	0.5	-0.5	0.50	2.0	3.00	▲ したい領域
RPP	6 -0.5	0.5	-0.5	0.50	3.0	4.00	を定義する ためのbody
RPP	7 -0.5	0.5	-0.5	0.50	4.0	5.00	
RPP	8 -0.5	0.5	-0.5	0.50	5.0	6.00	
RPP	9 -0.5	0.5	-0.5	0.50	6.0	7.00	
RPP	10 -0.5	0.5	-0.5	0.50	7.0	8.00	
RPP	11 -0.5	0.5	-0.5	0.50	8.0	9.00	

RPP	17 -0.5	0.5	-0.5	0.50	14.0	15.00	線量計算を
RPP	18 -0.5	0.5	-0.5	0.50	15.0	16.00	したい領域を
RPP	19 -0.5	0.5	-0.5	0.50	16.0	17.00	定報9る7c めのbody
RPP	20 -0.5	0.5	-0.5	0.50	17.0	18.00	
RPP	21 -0.5	0.5	-0.5	0.50	18.0	19.00	
RPP	22 -0.5	0.5	-0.5	0.50	19.0	20.00	
RPP	23 -0.5	0.5	-0.5	0.50	0.0	20.00 🔶	線量計算の全領域 を包含するbody
RPP	24 -15.0	15.0	-15.0	15.0	0 20.	0 25.00	← 背後の空気層
RPP	25 -20.0	20.0	-20.0	20.0	0 -20.	.0 40.00	◆──体系全体を覆う body

各リージョンへの物質、各種オプションの設定

- ! Set medium index for each region
- ! Vacuum region med(nreg)=0
- ! Air region med(1)=2 med(nreg-1)=2
- ! Water region

ファントムリージョンで、光電子の買う 度分布、特性X線、レイリー散乱オプ ションを設定

- do i=2,nreg-2
 - iphter(i) = 1 ! Switches for PE-angle sampling
 - iedgfl(i) = 1 ! K & L-edge fluorescence
 - iauger(i) = 0 ! K & L-Auger
 - iraylr(i) = 1 ! Rayleigh scattering
 - lpolar(i) = 0 ! Linearly-polarized photon scattering
 - incohr(i) = 0 ! S/Z rejection
 - iprofr(i) = 0 ! Doppler broadening
 - impacr(i) = 0 ! Electron impact ionization
 - med(i)=1 !Water phantom region

end do

Set parameter estepe and estepe2

estepe=0.10 estepe2=0.20

エネルギーヒンジのためのパラメータ設定 estepe:最大エネルギーの電子・陽電子 estepe2:最小エネルギー電子・陽電子

リージョン毎に設定できるオプション

ecut, pcut	カットオフエネルギー (全エネルギー)				
iphter	光電子の角度分布のサンプリング				
iedgfl	K & L-特性X線の発生				
iauger	K & L-オージェ電子の発生				
iraylr	レイリー散乱				
Ipolar	光子散乱での直線偏光				
incohr	S/Z rejection				
iprofr	ドップラー広がり				
impacr	電子衝突電離				

乱数(ranlux乱数)

call rluxinit ! Initialize the Ranlux random-number generator

異なったiseed毎に、重複しない乱数を発生することが可能 並列計算の場合に有効

Step 4: 入射粒子のパラメーター設定 ------Read spectrum pdf -----do i=1,1 X線源情報の読み込み read(2,*) nofebin(i)

```
read(2,*) deltae(i)
read(2,*) (sspec(i,ie),ie=1,nofebin(i))
end do
```

```
!------
! Select source type
!------ 線源の選択
150 write(6,160)
160 FORMAT(' Key in source type. 1:100kV')
read(5,*) ixtype
if (ixtype.eq.0.or.ixtype.gt.1) then
write(6,170)
170 FORMAT(' IXTYPE must be >0 <= 1.')
go to 150
end if
```

------Make energy bin table 線源サンプリングのためのエネルギー ビンテーブルの作成 ----do ie=1,nsebin ebint(ie)=(ie-1)*deltae(ixtype) end do 線源位置の指定(キーボードから) Define source position from phantom surface. _____ write(6,180) **180** FORMAT(' Key in source position from phantom surface in cm') read(5,*) sposi **!**_____ Source condition redefine -----粒子の種類 ! Incident charge - photons igin=0 ekein=ebint(nsebin) ! Maximum kinetic energy エネルギー(X線の最大エネルギー) etot=ekein 位置、方向 xin=0.D0 yin=0.D0 入射粒子の属するリージョン(irin=0;cgj zin=-sposi 情報かtら計算して決定) uin=0.D0 vin=0.D0 win=1.D0 irin=0 ! Source region number is defined from xin and yin.

粒子の種類 エネルギー(X線の最大エネルギー) 位置、方向 入射粒子の属するリージョン(irin=0;cg 情報から計算して決定)

Source condition redefine

!------

iqin=0 ! Incident charge - photons ekein=ebint(nsebin) ! Maximum kinetic energy etot=ekein xin=0.D0 yin=0.D0 zin=-sposi uin=0.D0 vin=0.D0 win=1.D0

irin=0 ! Source region number is defined from xin and yin.

Key in half width and height at phantom surface

write(6,190)

190 FORMAT(' Key in half width of beam at phantom surface in cm.') read(5,*) xhbeam write(6,200)

200 FORMAT(' Key in half height of beam at phantom surface in cm.')

read(5,*) yhbeam

radma2=xhbeam*xhbeam+yhbeam*yhbeam

wimin=sposi/dsqrt(sposi*sposi+radma2)

```
半値幅に対応した\thetaに対応する\cos \theta
```

Selection mode form Keyboard.

```
モードの選択(キーボード)
```

write(6,210)

210 FORMAT(' Key in mode. 0:trajectory display, 1:dose calculation') read(5,*) imode

Step 5: hatch-call

- 電子・陽電子の全エネルギーの最大値を emaxeとして設定し、hatchを call する
- 読み込んだ情報を確認するために、物質
 データ及び各リージョンの情報を出力する

emaxe = ekein + RM

線源粒子が光子の場合、近似的に線源光子のエネルギーに電子の 静止エネルギーを加えた値を設定する

Step 6:Initialization-for-howfar

 ユーザーコードで使用する形状データを設 定する

- 平板、円筒、球などに関するデータ

 CGを使用しているこのユーザーコードでは、 形状に関するデータは、cg入力データとし てstep 6以前に処理しているので、このstep で設定することはない Step 7: Initialization-for-ausgab

- 計算で求める量の初期化
- 中心領域で、線量計算をするリージョンの数
- 計算したいヒストリー数(ncases)をキーボード からの入力で設定する
 – 0の場合は、計算の終了

write(6,360) nreg-4

- 360 format(' Key in number of dose calculation region.(<=',I5,')') read(5,*) ndet
- 380 write(6,390)

390 FORMAT(' Key in number of cases (0 means end of calculation.)') read(5,*) ncases if (ncases.eq.0) go to 570

Step 8: Shower-call

- ncases数のヒストリー実行する
- ・飛跡情報ファイルに、ibatch(最初は、1)を
 記録する
- 各ヒストリー毎に、線源情報(粒子の種類、 エネルギー、位置、方向)を設定

```
410
     call randomset(w0)
     win=w0*(1.0-wimin)+wimin
     call randomset(phai0)
                             線源の方向と位置の決定
     phai=pi*(2.0*phai0-1.0)
                             ファントム表面での位置を計算し、設定した半値
     sinth=dsqrt(1.D0-win*win)
                             幅の領域からはみ出した場合には、サンプリン
     uin=dcos(phai)*sinth
                             グをやり直す
     vin=dsin(phai)*sinth
     dis=sposi/win
     xpf=dis*uin
     ypf=dis*vin
     if (dabs(xpf).gt.xhbeam.or.dabs(ypf).gt.yhbeam) go to 410
     if (sposi.gt.5.0) then
      disair=(sposi-5.0)/win
                              線源の位置が空気層の外側の場合、空気
      xin=disair*uin
                              層の入り口での位置を入射粒子の位置とし
                              て設定
      yin=disair*vin
      zin=-5.D0
     else
      xin=0.D0
      vin=0.D0
      zin=-sposi
     end if
```

入射粒子の位置から、その場所のリージョン番号を求める irin=0なので、ここでリージョン番号が設定される

Get source region from cg input data

! _____

if(irin.le.0.or.irin.gt.nreg) then
 call srzone(xin,yin,zin,iqin+2,0,irinn)
 call rstnxt(iqin+2,0,irinn)
else
 irinn=irin
end if

```
call randomset(ei0)
do ie=2,nsebin
if (ei0.lt.ecdft(ie)) then
go to 420
end if
end do
```

線源エネルギーの決定 CDFからサンプリングで決定

call shower (iqin,etot,xin,yin,zin,uin,vin,win,irinn,wtin)

計算したい量の平均値とその分散を求めるために、ヒストリー毎の値とその自乗を加える

```
do kdet=1,ndet
   depeh(kdet)=depeh(kdet)+depe(kdet)
   depeh2(kdet)=depeh2(kdet)+depe(kdet)*depe(kdet)
   depe(kdet)=0.0
   end do
```

```
faexps=faexps+faexp
faexp2s=faexp2s+faexp*faexp
faexp=0.0
fexpss=fexpss+fexps
fexps2s=fexps2s+fexps*fexps
fexps=0.0
```

統計的な誤差評価

- xをモンテカルロ計算によって求める量とする誤差を評価 するのに便利な2つの方法がある
- MCNPで使用している方法
 - 計算は N 個の"入射" 粒子について行われ、x_i は、i-番目のヒスト リーの結果であるとする

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$x_i \quad \mathcal{O}$$
中均値
$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - x)^2 \approx \overline{x^2} - (\overline{x})^2; (\overline{x^2} = \frac{1}{N} \sum_{i=1}^{N} x_i^2)$$

$$x_i \quad \mathcal{O}$$

$$s_{\overline{x}}^2 = \frac{1}{N} s^2 \approx \frac{1}{N} [\overline{x^2} - \overline{x}^2]$$

$$\overline{x} \quad \mathcal{O}$$

$$R = \frac{s_{\overline{x}}}{\overline{x}} \approx [\frac{1}{N} (\frac{\overline{x^2}}{\overline{x^2}} - 1)]^{1/2}$$
相対標準偏差

MORSE-CGで使用している方法

- 計算は N 個の"入射" 粒子について行われ、x_i は、i-番目のヒストリーの結果であるとする
- "N" ヒストリーを、それぞれ N/n ヒストリーのn 個のバッチ
 に分割する
- 各バッチ毎に得られた値を x_jとする

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x_{j}$$

$$x_{j} \mathcal{O} \mathbb{P} 均値$$

$$s_{x}^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{j} - x)^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{j}^{2} - \overline{x}^{2})$$

$$x_{j} \mathcal{O} 分散$$

$$s_{\overline{x}}^{2} = \frac{s_{x}^{2}}{n}$$

$$\mathbb{P} 均 \mathcal{O} 分散$$

$$FSD = \frac{s_{\overline{x}}}{\overline{x}}$$
相対標準偏差

Step 9: Output-of-results

- ・線源条件や、形状等の情報の出力
 - どの様な計算であるかを示すために出力
 - cgの場合は、形状をデータから直接示すことが 容易でないので、必要な情報を設定して出力 する
- X線の線源スペクトルとサンプリング結果の 比較
- 平均値の和とその自乗の和から、求めたい 量の平均値と誤差を計算し、出力する

吸収線量

```
area=1.D0*1.D0
     do kdet=1,ndet
      vol=area*1.D0
       dose(kdet)=depeh(kdet)/ncases
      dose2(kdet)=depeh2(kdet)/ncases
       doseun(kdet)=dsqrt((dose2(kdet)-dose(kdet)*dose(kdet))/ncases)
       dose(kdet)=dose(kdet)*1.602E-10/vol
       doseun(kdet)=doseun(kdet)*1.602E-10/vol
       depths=kdet-1.0
       depthl=kdet
      write(6,530)depths,depthl,(media(ii,med(kdet+1)),ii=1,24),
    * rhor(kdet+1),dose(kdet),doseun(kdet)
      FORMAT(' At ',F4.1,'--',F4.1,'cm (',24A1,',rho:',F8.4,')=',
530
    *
     G13.5,'+-',G13.5,'Gy/incident')
```

- write(1,530) depths,depthl,(media(ii,med(kdet+1)),ii=1,24),
- * rhor(kdet+1),dose(kdet),doseun(kdet)
 end do

ausgab

- ausgabは、ユーザーが得たい情報を記録するサブルーチンである
- ファントム領域での吸収線量
- ファントム表面での照射線量

if (irl.ge.2.and.irl.le.nreg-3) then
 idet=irl-1
 if(idet.ge.1.and.idet.le.ndet) then
 depe(idet)=depe(idet)+edepwt/rhor(irl)
 end if
 end if

線量計算の領域の粒子の場合、単位重量当たりの吸収線 量を積算する

rhor(irl)は、当該リージョンの密度

照射線量の計算

```
光子が面を横切った場合
 if (abs(irl-irold).eq.1.and.iq(np).eq.0) then
   if((w(np).gt.0.0.and.irl.eq.2).or.(w(np).le.0.0.and.irl.eq.1))
* then
                                                  ファントム前面の場合
    if (dabs(w(np)).ge.0.0349) then
                                      平面粒子束:単位面積を通過する粒子束
      cmod=dabs(w(np))
                                      の計算 --cosθ の補正
    else
      cmod=0.0175
    end if
    esing=e(np)
                                            エネルギーESINGの光子に対する
                                            空気の質量吸収係数
    dcon=encoea(esing)
                             ! PHOTX data
    fexps=fexps+e(np)*dcon*wt(np)/cmod
    if (w(np).lt.0.0) latch(np)=1
    if (w(np).gt.0.0.and.latch(np).eq.0) then
      faexp=faexp+e(np)*dcon*wt(np)/cmod
    end if
   end if
end if
```

howfar

- howfarは、egsにジオメトリーに関する情報を伝えるサブ ルーチン
- howfarは、ustepの途中に、リージョン境界があるかどうかを 調べる。ある場合には、
 - ustepを境界までの距離に置き換える
 - irnew を粒子が入っていくリージョン番号に設定する
- 粒子が、ユーザーが追跡を止めたい領域(例:体系外)に達したばあいには、idiscard フラグを1に設定する
- 使用するジオメトリールーティン毎に異なったhowfarとなる
 cgを使用している場合は、このユーザーコードのhowfarを使用する

ユーザーコードで利用可能な変数、 オプションについては egs5_user_manualを参照

実習課題

- 実習課題1:線源を、Cs-137の単一エネルギー光子 (0.662MeV)に変える。
- 実習課題2:線源をCo-60に変え、1.173MeVと1.333MeV光
 子を同じ確率で発生させる。
- 実習課題3:肺のモデルに変更する
 - 前面から3cmを通常の人体組織、3-13cmを肺(密度0.3g/cm³)とし、
 その背後に3cmの人体組織がある体系に変更する。線源は、元の
 X線とする。
- 実習課題4:腫瘍を含む肺
 - 肺の前面から3cmの位置に、厚さ2cmの腫瘍を設定する。密度を通常の水とする。
 - 腫瘍は、X-, Y-方向全域に拡がっていると仮定する。線源は、元の X線とする。
- 実習課題5:金属の挿入
 - ファントムから5cm-6cmの領域を鉄に変える。線源は、元のX線と する。