Comparison with a 4MeV X-ray Dose and Monte Carlo simulation using

a Human Body Phantom

A.Chadani¹, K.Koshida², K.Minami³, K.Ejiri³, M,Shimo³, Y.Hibino⁴, K.Egami⁴, S.Arakawa⁴, H.Nakagawa¹, C.Kawabata¹ and M.Hayakawa¹

¹Division of Health Science, Graduate School of Medical Science, Kanazawa University ²Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Kanazawa University

³Faculty of Radiologial Technology, school of Health Sciences, Fujita Health University ⁴Department of Radiological Technology, Fujita Health University

[Purpose] It is not easy to evaluate the accuracy of a human body model in a dose simulation. For this reason, a mathematical phantom (voxel phantom) of a human body phantom is used as a model that can be compared with the measurement. The difference between the simulation and the measurement was examined.

[Method] A female human body phantom (made in the Phantom Laboratory company: Alderson RAND Phantom RAN-100 Type) was used. The Monte Carlo calculation code was used the Electron Gamma Shower Version 4 (EGS4). The depth doses in a RANDO phantom were measured using a radiophoto-luminescence glass dosimeter and thermo-luminescence dosimeter. Exposure conditions were performed using 4 MeV X-rays and Antero-posterio geometry.

[Results and Discussion] The difference between the calculation values and the measurements was about 10%. It is considered that is the values are different between the structure material and the domain setup of the RAND and voxel phantoms.