Sample user codes for egs5 lists (Fortran)

Hideo Hirayama and Yoshihito Namito KEK, High Energy Accelerator Research Organization

Type 1

Material name, assignment material to each region, geometry related parameters and various condition related source particle are defined at the main program like EGS4.

ucshield.f	ucshield.inp	 corresponding to ucshield.mor
ucphantom <u></u>	_rec.f ucphantom_rec.inp	 corresponding to ucphantom_rec.mor

Type 2

Geometry related parameters, various conditions relate source particle are defined as the input data read from unit 4. If the scoring information is same, it is possible to run different calculations by changing input data. File type ".data" corresponding to the input data read from unit 4 and that ".inp" to the input data for pegs.

2-1 Cylinder-plane geometry

ucrz_sampl4.f, ucrz_sampl4.data, ucrz_sampl4.inp --- corresponding to ucsampl4.mor ucrz_nai.f, ucrz_nai.data, ucrz_nai.inp ---- corresponding to ucnai3.mor

[
Record 1	title (80A1)	Title	
Record 2	nmed	Number of media in problem.	
Record 3	media(j,i) (24A1)	Media names (j=1,24, i=1,nmed lines).	
Record 4	ncyl,nplan	Number of cylinders (ncyl) and planes (nplan).	
Record 5	cyrad	Boundary data for radius of cylinders.	
		cyrad(i),i=1,ncyl	
Record 6	zpl	Boundary data for Z planes(cm)	
		zpl(k),k=1,nplan	
Record 7	medtmp, rhotmp,	Material number, density, ecut and pcut for	
	ecutin, pcutin	all region at each Z-bin	
	(I10,3F10.3)	medtmp : material number assigned	
		rhotmp : density. if rhotmp=0.0, default	

[Input data from unit 4]

		density is used.
		If medtmp is not 0, sampling option data
		follows.
Record 7a	Ipeangsw	Switches for PE-angle sampling,
Necora va	iedgesw,	K & L-edge fluorescence,
	iraysw,	Rayleigh scattering,
	ipolarsw,	Linearly-polarized photon scattering,
	incohrsw,	S /Z rejection,
	iprofrsw,	Doppler broadening,
	impacrsw	Electron impact ionization (0=off, 1=on).
	(715)	Election impact ionization (0-on, 1-on).
Record 8	nzbin,nrbin,medtmp,rho	Replace the material number, density, ecut
Nector a o	tmp, ecutin, pcutin	and pcut for the defined region (z-bin=nzbin,
	(3I5,3F10.3)	r-bin=nrbin).
	(010,01 10.0)	If nzbin=0, it means the end of replacement.
		If medtmp=0, following sampling option data
		follows.
Record 8a	Ipeangsw,iedgesw,	Same with Record 7a
Nector a ba	iraysw,ipolarsw,	
	incohrsw, iprofrsw,	
	impacrsw	
	impuersw	
Record 9	xin,yin,zin	Incident X,Y,Z coordinates (cm)
Record 10	irin,	Incident region
Record 11	uin,vin,win	Incident direction cosines (uin,vin,win)
		If uin=vin=win=0, it means isotropic source.
Record 12	ixx,jxx	Starting random number seeding.
		If ixx = 0, ixx is set to 123457.
		If jxx = 0, jxx is set to 654321.
Record 13	ncases	Number of cases.
Record 14	ekein,iqin,isamp	Kinetic energy (MeV), charge of incident
		beam, and sampling switch. If isamp=0, a
		monoenergetic beam (ekein) will be used.
		Otherwise, a spectrum input must follow
		(Records 14a through 14b), which will be
		sampled from discrete energy (isamp=1),

		directly (isamp=2) or uniformly over the	
		energy range (isamp=3) with weighting factor.	
Record 14a	ebinmin	Only required when isamp>1(see above).	
		Lowest energy (MeV) in spectrum.	
Record 14b	ebin(i),epdf(i)	Only required when usamp>0(see above).	
		ebin(i) is the `top-edge' of each energy bin	
		(MeV) and epdf(i) is the corresponding	
		probability for the bin.	
		For example, a cross section (mb) can be used	
		for epdf (but do not divide it by dE). The last	
		card is a delimiter and should be blank (or	
		contain 0.0). The i-subscript runs from 1 to	
		nebin (nebin calculated after the delimiter).	
Record 15	Iwatch	Switch for tracking events with swatch:	
		(0=No, 1=each interaction, 2=each step)	
Record 16	ibrdst,iprdst,	Switches for bremsstrahlung and pair	
	ibrspl,nbrspl	production ANGLE SAMPLING, and	
		brems-strahlung SPLITTING:	
		ibrdst=0 No (use default: theta=m/E)	
		1 Yes (recommended)	
		iprdst=0 No (use default: theta=m/E)	
		1 Yes (low-order distribution)	
		2 Yes (recommended)	
		ibrspl=0 No	
		1 Yes (NBRSPL=splitting factor)	
Record 17	estepe,estepe2	Parameters used for charged particle	
		transport	

2-2 Volume element (Voxel) Geometry

Voxel geometry uses planes which are perpendicular x-, y, or z-axis. This treatment based on the way used in xyzdos.mor.

ucxyz_dose.f ucxyz_dose.data ucxyz_dose.inp ----- corresoponding to xyzdos.mor ucxyz_dose_f.data (corresponding to benchf.inp)

ucxyz_phantom.f ucxyz_phantom.data ucxyz_phantom.inp ----- corresponding to voxel version of ucphantom_rec.mor

[Input data for unit 4]

Record 1-3		Same with cylinder plane geometry.	
Record 4	maxx, maxy, maxz	Number of voxel in the X,Y,Z directions	
		If <0, it means that number of equally spaced	
		boundaries will be input.	
Record 5 Xbound		xbound	
		i.e. repeat the following replacing (i and x),	
		(j and y) and (k and z) respectively.	
		if maxx > 0 input, one per line, the maxx + 1	
		x boundaries	
		if maxy < 0 input smallest x boundary,	
		followed by abs(maxx) pairs one pr/line:	
		voxl width, # voxls with this width	
Record 6	Ybound	Ybound data	
Record 7	Zbound	Zbound data	
Record 8	il,iu, jl,ju, kl,ku, medtmp,	Line is repeated until a blank line found.	
	rhotmp,ecutin,pcutin zpl	For all voxels with	
		il <=i <=iu,	
		jl <= j <= ju	
		$kl \leq k \leq ku$	
		the medium used is medtmp and the density	
		used is rhotmp. If rhotmp=0.0, the default	
		value for that medium is used (faster than	
		entering default density here).	
		If iu and il are zero, it means the end of define	
		If medium not 0, following option is set to the	
		regions above.	
Record 8a	ipeangsw,	Switches for PE-angle sampling,	
	iedgesw,	K & L-edge fluorescence,	
	iraysw,	Rayleigh scattering,	
	ipolarsw,	Linearly-polarized photon scattering,	
	incohrsw,	S/Z rejection,	
	iprofrsw,	Doppler broadening,	
	impacrsw	electron impact ionization (0=off, 1=on).	
Record 9	il,iu, jl,ju, kl,ku,izscan	Regions for which the dose will be output.	

		IZSCAN non-zero to get z-scan per page,
		otherwise output is an x-scan per page.
Record 10	xlower, xupper	Boundaries of beam in x direction, in cm.
		If xlower is zero, a value near middle is taken.
		If XUPPER is zero, no extent in X direction.
Record 11	ylower, yupper	As for y direction.
Record 12	thetaz,thetax,thetay	thetaz: angle of beam to z axis (0 is normal)
		in degrees. If thetaz is zero, others assumed
		normal(i.e.90 deg). If thetaz is non-zero - and
		others both are zero. thetax is as large as
		possible - i.e. max cos allowed, and thetay is 90
		deg. If thetax is non-zero, it may be reduced if
		too large, and thetay will be choosen to
		normalize the direction cosines.
After Record 13		Same with after Record 12 of the cylinder-slab
		geometry.

2-3 Combinatorial Geometry (cg) geometry

uccg_nai.f	uccg_nai.data	uccg_nai.inp	corresponding to
			uccgnai3.mor
uccg_phantom.f	uccg_phantom.data	uccg_phantom.inp	corresponding to
			uccgphantom.mor

[Input data for unit 4]

Following data must be written after cg geometry related data.

Record 1-3		Same with cylinder plane geometry.
Record 4	irlinl,irlinu,,medtmp,	Set material for region from irlinl to ielinh.
	rhotmp, ecutin, pcutin	medtmp : material number
		rhotmp : If rhotmp=0.0, the default value for
		that medium is used.
		ecutin, pcutin : KINETIC energy cutoffs for
		electrons and photons, respectively, in MeV. If
		> 0, ecut(i) and pcut(i) are set. Otherwise ae
		and ap are used (default).
		irlinl =0 means end of define.
		If medtmp not 0, following data follows.

Record 4a	ipeangsw, iedgesw,	Same with Record 7 a of the cylinder-slab
	iraysw, ipolarsw,	geometry.
	incohrsw,	
	iprofrsw, impacrsw	
After Recor	d 5	Same with after Record 9 of the cylinder-slab
		geometry.