How to Write Geometry of EGS5

Y. Namito and H.Hirayama KEK, High Energy Accelerator Research Organization

28 JUL 2004

Geometry in EGS5

- An EGS5 User Code requires:
- SUBROUTINE AUSGAB for scoring results
- SUBROUTINE HOWFAR to provide information to EGS5 about the nature of the geometry
- In EGS5, the unit of geometry is called "region". Material is assigned to each region.
- EGS4 geometry versus EGS5 geometry
- Mortran is changed into fortran.
- Macros are changed into subroutines.
- No HOWNEAR is needed.
- Geometry related variable names are not changed.

Selection of geometry structure

1. Regular (Multi cylinder, Multi slab, Voxel)
i. HOWFAR is already written.
ii. Input: Number and location of plane, cylinder.
2. Combinatorial Geometry
i. HOWFAR is already written.
ii. Input: Size and location of box, cylinder, sphere etc and combination of them.
iii. Geometry display system cgview (w/geometry checker) iv. About 2-2.5 times slower than "Regular" above. (Up to 5 times faster than 2003 version CG by Mr. Sugita.)
3. Self-written HOWFAR
i. Lot of freedom (Effort is needed for coding.)
ii. Faster than CG

Story and goal of this talk

- Explanation of HOWFAR for multi cylinder and multi slab, input for it in MAIN.
- Understanding of input for this HOWFAR (Most busily used howfar)
- Understanding of structure of HOWFAR which is necessary when one write it.

USTEP, IDISC, IRNEW

- Three EGS5 variables that play important roles in HOWFAR.
- Available in COMON/EPCONT/.
- USTEP: Distance to the next position. It was set to the interaction point in the case of photons before calling HOWFAR. It was set to a current region (IR(NP)) before calling HOWFAR.
- IDISC: Flag to indicate a discard region when it is 1.
- IRNEW: The region number when a particle moves a distance

Functions of HOWFAR

- If a current region is a discard region
- Set IDISC=1 and return
- Calculate a straight-line distance to the boundary (DIST).
- If DIST < USTEP,
- Shrunk USTEP to DIST
- and set IRNEW to the region number that a particle will enter (NEXTREG).

USTEP=DIST;
 IRNEW=NEXTREG;

> ; is Fortran statement separator (NOT Mortran) Used just here to save space in PPT

How to calculate the distance to the boundary

- User can use his/her own way to calculate the distance to the boundary.
- EGS5 system provides several subroutines.
- PLANE1, PLAN2P, PLAN2X
- CYLNDR, CYL2
- CONE, CONE2
- SPHERE, SPH2
- Two other geometry subroutines are available to help the function of HOWFAR.
- CHGTR for changing USTEP and IRNEW if needed.
- FINVAL for getting new coordinate at the and of any transport

Separate space by plane

Name the two spaces

Space where normal vector starts:
ISIDE=1

Space where normal vector reaches: ISIDE= -1
(Variable in PLANE1)

Subroutine PLANE1(NPLAN,ISIDE,IHIT,TVAL)

NPLAN: ID number of plane to be checked
ISIDE : Specify 1 if region is between origin and outer normal Specify -1 if region is not between origin and outer normal

IHIT : 1 is returned if particle trajectory will hit plane
2 is returned if particle trajectory is parallel to plane
0 is returned if particle trajectory is away from plane
TVAL : Distance to plane is returned if $\mathrm{IHIT}=1$

- The plane is defined by its normal vector (PNORM(I,J),I=1,3) and coordinates at the intersection point of the normal vector and the plane ($\mathbf{P C O O R D}(\mathbf{I}, \mathbf{J}), \mathbf{I}=\mathbf{1 , 3})$.
- Both variables are available in COMMON/PLADTA/.

Consider two parallel planes separating three regions:

The regions are identified by number 22, 23 and 24 and the planes by number 6 and 7 .

Definition of planes

- Assuming that planes 6 and 7 are located at $\mathrm{z}=30 \mathrm{~cm}$ and $\mathrm{z}=45 \mathrm{~cm}$, respectively.
- Planes 6 and 7 are defined as:
$\operatorname{PCOORD}(1,6)=0.0 ; \operatorname{PCOORD}(2,6)=0.0 ; \operatorname{PCOORD}(3,6)=30.0 ;$ $\operatorname{PNORM}(1,6)=0.0 ; \quad \operatorname{PNORM}(2,6)=0.0 ; \quad \operatorname{PNORM}(3,6)=1.0 ;$
$\operatorname{PCOORD}(1,7)=0.0 ; \operatorname{PCOORD}(2,7)=0.0 ; \operatorname{PCOORD}(3,7)=45.0 ;$ $\operatorname{PNORM}(1,7)=0.0 ; \quad \operatorname{PNORM}(2,7)=0.0 ; \quad \operatorname{PNORM}(3,7)=1.0 ;$

Particles are initially started in region 23 , and discarded when they leave this region.

```
SUBROUTINE HOWFAR
include `include/egs5_h.f` !Other includes are omitted
integer irl !Other declarations are omitted
IRL=IR(NP)
IF(IRL.NE.23)
    IDISC=1; !Discard particles outside region 23
ELSE !Track particles within region23
    call PLANE1(7,1,IHIT,TPLAN) !Check upstream plane first
    IF(IHIT.EQ.1) !Surface is hit --- make change if necessary
    call CHGTR(TPLAN,24)
    ELSEIF(IHIT.EQ.0) !Heading backwards
    call PLANE1(6,-1,IHIT,TPLAN) !To get TPLAN-value (IHIT=1, must)
    call CHGTR(TPLAN,22) !Make change if necessary
    END IF
    END IF
RETURN; END;
```


Subroutine CHGTR

- The subroutine CHGTR(tvalp,irnewp) does the following:
- If tvalp.le.ustep then
- ustep=tvalp and
- irnew=irnewp
- Otherwise, nothing is done.
if (tvalp .le. ustep) then ustep = tvalp
irnew = irnewp end if

Subroutine FINVAL

Subroutine FINVAL is useful for determining the final coordinates of a particle.

Subroutine FINVAL (DIST,XCOORD,YCOORD,ZCOORD)
DIST : the distance traveled.
XCOORD: X-coordinate after travel.
YCOORD: Y-coordinate after travel.
ZCOORD: Z-coordinate after travel.

Subroutine PLAN2P

- The HOWFAR example that we have been following can be simplified even further with the aide of Subroutine PLAN2P
SUBROUTINE HOWFAR;
include 'include/egs5_epcont.f' ${ }^{\text {' }}$!Other includes are omitted
integer irl ! Other declarations are omitted
IRL=IR(NP)
IF(IRL.NE.23)
IDISC=1 !Discard particles outside region 23
ELSE !Track particles within region 23
CALL PLAN2P(7,24,1,6,22,-1);
END IF
RETURN
END

Arguments of PLAN2P

Subroutine PLAN2P(NPL1,NRG1,ISIDE1,NPL2,NRG2,ISIDE2)

NPL1: ID number of first plane to be checked.
NRG1: region to go into if first plane is intersected by particle.
ISIDE1: 1 or - $\mathbf{1}$ (same with ISIDE in PLANE1)
NPL2: ID number of second plane to be checked.
NRG2: region to go into if second plane is intersected by particle.
ISIDE2: 1 or - $\mathbf{1}$ (same with ISIDE in PLANE1)
-The first group of numbers (NPL1,NRG1,ISIDE) $(7,24,1)$ corresponding check the downstream plane is equivalent to
PLANE1(7,1,IHIT,TPLAN) followed by CHGTR(TPLAN,24).
-The second group of numbers (NPL2,NRG2,ISIDE) $(6,22,-1)$ corresponding check the downstream plane is equivalent to

PLANE1(6,-1,IHIT,TPLAN) followed by CHGTR(TPLAN,22).

At region i: forward plane $\mathrm{No}=\mathrm{i}$, forward region $\mathrm{No}=\mathrm{i}+1$
NPL1=IRL; NRG1=IRL+1;
backward plane No=i-1, backward region No=i-1 NPL2=IRL-1; NRG2=IRL-1;

Multi-slab Geometry

- It is simple to extend the previous HOWFAR for many slabs.

```
SUBROUTINE HOWFAR !Multi-slab
include 'include/egs5_epcont.f` ! See program for other include
integer irl !See program for other declarations
IRL=IR(NP) !Create a local variable
IF(IRL.EQ.1.OR.IRL.EQ.NREG)
    IDISC=1; !Upstream/downstream region
ELSE
    CALL PLAN2P(IRL,IRL+1,IRL-1,IRL-1,-1)
END IF
RETURN
END
```

The intersection of a vector Possible trajectories intersection a cylinder with a cylindrical surface leads to a quadratic equation, the solution of which are both real and imaginary and corresponding to actual physical situations.
square $=$ starting point, to act
ons.

- Subroutine CYLNDR was designed to take all these possibilities into account.
- A cylinder which has the Z-axis as symmetry axis is;

Subroutine CYLINDR(ICYL,ISIDE,IHIT,TCYL)

ICYL: ID number of cylinder to be checked
ISIDE : Specify as 1 when particle is inside cylinder
Specify as 0 when particle is outside cylinder
IHIT : 1 is returned if particle intersects surface
0 is returned if means particle misses surface
TCYL: Distance to surface is returned if $\mathrm{IHIT}=1$
The conic surface algorithms basically are all the same. CONE and SPHERE may be used in SUBROUTINE HOWFAR in the same manner as CYLNDR.

Example of cylindrical target

- The cylinder of rotation about z -axis is defined by box 1 .
- There are four regions of interest - the target (region 2) and three vacuum regions upstream, downstream and surrounding the target.
-The following HOWFAR will work for this geometry.

SUBROUTINE HOWFAR;

include 'user_auxcommons/cyldta.f' ! See program for all include files
integer irl !See program for all declarations
$\operatorname{IRL}=\operatorname{IR}(\mathrm{NP})$! Create local variable

IF(IRL.NE.2)

IDISC=1! Discard particles outside the target
ELSE !Track particle within the target
call CYLNDR(1,1,IHI,TCYL) !Check the cylinder surface
IF(IHIT.EQ.1)
call CHGTR(TCYL,4) :Change if necessary
call PLAN2P(2,3,1,1,1,-1) !Check the downstream (and upstream) planes
END IF
RETURN
END

Definition of cylinder radius

-The radius of the cylinder (CYRAD) and its square (CYRAD2) must be defined in MAIN.

- These quantities are passed to HOWFAR via COMMON/CYLDTA/.
- Maximum number of cylinder (MXCYLS) is defined in user_auxcommons/ aux_h.f and can be re-defined.

Multi Cylinders and Slabs Example

- Consider a case that include 2 cylinders and 3 slabs:

Subroutine CYL2 : Treats particles between 2 cylinders
This subroutine corresponding to PLAN2P for the two parallel planes.
Subroutine CYL2(NCY1,NRG1,NCY2,NRG2)
NCY1: ID number of first cylinder to be checked.
Particle must be outside the first cylinder.
NRG1: Region to go into if first cylinder is intersected by particle.

NCY2: ID number of second cylinder to be checked. Particle must be inside the second cylinder.
NRG2: Region to go into if second cylinder is intersected by particle.

SUBROUTINE HOWFAR

include 'user_auxcommons/cyldta' ! See program for all include integer irl !See program for all declarations
IRL=IR(NP) !Create local variable
IF(IRL.LE.1.OR.IRL.GE.IRZ+2)
IDISC=1
RETURN
END IF
NSLAB=(IRL-2)/NCYL+1; !Slab number. NCYL:number of cylinder
NANNU=IRL-1-NCYL*(NSLAB-1); !Annulus number
NPL1=NSLAB+1; NPL2=NSLAB:
IF(NSLAB.LT.NPLAN-1)
NRG1=IRL+NCYL
ELSE
NRG1=IRZ +2
END IF

```
IF(NSLAB.GT.1)
    NRG2=IRL-NCYL
ELSE
    NRG2=1
END IF
CALL PLAN2P(NPL1,NRG1,1,NPL2,NRG2,-1)
IF(NANNU.LT.NCYL)
    NRG2=IRL+1
ELSE
    NRG2=IRZ+3
END IF
IF(NANNU.GT.1)
    NRG1=IRL-1
    NCL2=NANNU
    NCL1=NANNU-1
    CALL CYL2(NCL1,NRG1,NCL2,NRG2)
    RETURN
    END IF
CALL CYLNDR(1,1,IHIT,TCYL)
IF(IHIT.EQ.1) CALL CHGTR(TCYL,NRG2)
RETURN
END
```

-This HOWFAR can be used for a geometry having any number of cylinders and slabs.
-Sample user code of multi cylinders and slabs:
—ucrz_nai.f

- This user code also simulates $\mathrm{NaI}(\mathrm{Tl})$ detector response.

Summary of input for multi-cylinder multi-slab geometry

- common/PLADTA/pcoord(3,MXPLNS), pnorm(3,MXPLNS)
- common/CYLDTA/cyrad2(MXCYLS),cyr ad(MXCYLS)
- common/GEORZ/ncyl,nplan,irz

NPLAN:\# of planes
NCYL: \# of cylinders
NREG=(NPLAN-1)*NCYL+3;
IRZ=NREG-3;

